cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145576 a(n) is the smallest prime with both exactly an n number of 0's and exactly an n number of 1's in its binary representation. a(n) = 0 if no such prime exists.

Original entry on oeis.org

2, 0, 37, 139, 541, 2141, 8287, 33119, 131519, 525247, 2098687, 8391679, 33561599, 134242271, 536895487, 2147548159, 8590061567, 34360196863, 137439412223, 549756861439, 2199026663423, 8796097216447, 35184380411903
Offset: 1

Views

Author

Leroy Quet, Oct 13 2008

Keywords

Examples

			a(3) = 37 = 100101 (base 2) is the smallest prime with three 0's and three 1's in its binary representation. - _R. J. Mathar_, Oct 14 2008
		

Crossrefs

Programs

  • Maple
    A000120 := proc(n) local d; add(d,d=convert(n,base,2)) ; end: A080791 := proc(n) local d,dgs; dgs := convert(n,base,2) ; nops(dgs)-add(d,d=dgs) ; end: A070939 := proc(n) max(1,ilog2(n)+1) ; end: A145576 := proc(n) local p,pbin; p := nextprime(2^(2*n-1)-1); while true do pbin := A070939(p) ; if pbin > 2*n then RETURN(0) ; elif pbin = 2*n then if A000120(p) = n and A080791(p) = n then RETURN(p) ; fi; fi; p := nextprime(p) ; od: end: seq(A145576(n),n=1..30) ; # R. J. Mathar, Oct 14 2008
    # Alternative:
    F:= proc(n) local c,x;
          c:= [$n+1..2*n-2];
          do
            x:= 2^(2*n-1)+1+add(2^(2*n-1-c[i]),i=1..n-2);
            if isprime(x) then return x fi;
            c:= combinat:-prevcomb(c, 2*n-2)
          od
    end proc:
    2, 0, seq(F(n),n=3..30); # Robert Israel, Sep 24 2017
  • Mathematica
    Table[SelectFirst[Prime@ Apply[Range, PrimePi@{2^(2 (n - 1)) + 1, 2^(2 n) - 1}], Union@ DigitCount[#, 2] == {n} &] /. k_ /; MissingQ@ k -> 0, {n, 12}] (* Michael De Vlieger, Sep 24 2017 *)

Extensions

Extended by R. J. Mathar and Ray Chandler, Oct 14 2008