A145602 a(n) is the number of walks from (0,0) to (0,3) that remain in the upper half-plane y >= 0 using 2*n +1 unit steps either up (U), down (D), left (L) or right (R).
1, 24, 392, 5760, 81675, 1145144, 16032016, 225059328, 3173688180, 44986664800, 641087516256, 9183622822400, 132211882468575, 1912322889603000, 27781440618420000, 405248874740582400, 5933888308457316900
Offset: 1
Links
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
Programs
-
Maple
with(combinat): a(n) = 2/(n+1)*binomial(2*n+2,n+3)*binomial(2*n+2,n-1); seq(a(n),n = 1..19);
Formula
a(n) = 2/(n+1)*binomial(2*n+2,n+3)*binomial(2*n+2,n-1).
Comments