A145661 Triangle T(n,k) = (-1)^k * A119258(n,k) read by rows, 0 <= k <= n.
1, 1, -1, 1, -3, 1, 1, -5, 7, -1, 1, -7, 17, -15, 1, 1, -9, 31, -49, 31, -1, 1, -11, 49, -111, 129, -63, 1, 1, -13, 71, -209, 351, -321, 127, -1, 1, -15, 97, -351, 769, -1023, 769, -255, 1, 1, -17, 127, -545, 1471, -2561, 2815, -1793, 511, -1, 1, -19, 161, -799, 2561
Offset: 0
Examples
Triangle begins 1; 1, -1; 1, -3, 1; 1, -5, 7, -1; 1, -7, 17, -15, 1; 1, -9, 31, -49, 31, -1; 1, -11, 49, -111, 129, -63, 1; 1, -13, 71, -209, 351, -321, 127, -1; 1, -15, 97, -351, 769, -1023, 769, -255, 1; 1, -17, 127, -545, 1471, -2561, 2815, -1793, 511, -1; 1, -19, 161, -799, 2561, -5503, 7937, -7423, 4097, -1023, 1;
Links
- J.-F. Chamayou, A Random Difference Equation with Dufresne Variables Revisited, arXiv preprint arXiv:1410.1708 [math.PR], 2014. See Table in Section XII.
- M. Shattuck and T. Waldhauser, Proofs of some binomial identities using the method of last squares, Fib. Quart., 48 (2010), 290-297.
Programs
-
Maple
A119258 := proc(n,k) if k=0 or k = n then 1; elif k<0 or k> n then 0; else 2*procname(n-1,k-1)+procname(n-1,k) ; end if; end proc: seq(seq(A119258(n,k),k=0..n),n=0..10) ; A145661 := proc(n,k) (-1)^k*A119258(n,k) ; end proc: # R. J. Mathar, Oct 21 2011
-
Mathematica
Clear[M, T, d, a, x, a0]; T[n_, m_, d_] := If[ m == n + 1, 1, If[n == d, 1, 0]]; M[d_] := MatrixPower[Table[T[n, m, d], {n, 1, d}, {m, 1, d}], d]; Table[M[d], {d, 1, 10}]; Table[Det[M[d]], {d, 1, 10}]; Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Expand[CharacteristicPolynomial[M[n], x]], x], {n, 1, 10}]]; Flatten[a] Join[{1}, Table[Apply[ Plus, CoefficientList[Expand[CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]];
Comments