A145829 Square root of squares in A145768 (XOR of squares of the numbers 1..n).
1, 4, 1, 15, 0, 16, 20, 31, 16, 49, 65, 224, 96, 96, 337, 144, 720, 400, 945, 625, 928, 828, 367, 928, 1889, 624, 2609, 3568, 3568, 2064, 10273, 1040, 545, 12384, 12639, 56800, 25812, 15119, 36, 864, 144383, 146463, 195440, 61391, 61072, 61072, 58128, 25872
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..63
Crossrefs
Programs
-
Haskell
a145829 n = a145829_list !! (n-1) a145829_list = map a000196 $ filter ((== 1) . a010052) $ tail a145768_list -- Reinhard Zumkeller, Nov 09 2012
-
Mathematica
an = 0; Reap[ For[i = 1, i <= 10^6, i++, an = BitXor[an, i^2]; If[IntegerQ[r = Sqrt[an]], Print[r]; Sow[r]]]][[2, 1]] (* Jean-François Alcover, Oct 11 2013, translated from Pari *)
-
PARI
an=0; for( i=1,10^4, an=bitxor(an,i^2); issquare(an,&an) && print1(an","))
-
Python
from itertools import count, islice from sympy import integer_nthroot def A145829gen(): # generator of terms m = 0 for n in count(1): m ^= n**2 a, b = integer_nthroot(m,2) if b: yield a A145829_list = list(islice(A145829gen(),20)) # Chai Wah Wu, Dec 16 2021