cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145829 Square root of squares in A145768 (XOR of squares of the numbers 1..n).

Original entry on oeis.org

1, 4, 1, 15, 0, 16, 20, 31, 16, 49, 65, 224, 96, 96, 337, 144, 720, 400, 945, 625, 928, 828, 367, 928, 1889, 624, 2609, 3568, 3568, 2064, 10273, 1040, 545, 12384, 12639, 56800, 25812, 15119, 36, 864, 144383, 146463, 195440, 61391, 61072, 61072, 58128, 25872
Offset: 1

Views

Author

M. F. Hasler, Oct 20 2008

Keywords

Crossrefs

a(n) = A000196( A145828(n)) = A000196( A145768( A145827(n))); A145828 = { a(n)^2 } = A145768 intersect A000290.

Programs

  • Haskell
    a145829 n = a145829_list !! (n-1)
    a145829_list = map a000196 $ filter ((== 1) . a010052) $ tail a145768_list
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Mathematica
    an = 0; Reap[ For[i = 1, i <= 10^6, i++, an = BitXor[an, i^2]; If[IntegerQ[r = Sqrt[an]], Print[r]; Sow[r]]]][[2, 1]] (* Jean-François Alcover, Oct 11 2013, translated from Pari *)
  • PARI
    an=0; for( i=1,10^4, an=bitxor(an,i^2); issquare(an,&an) && print1(an","))
    
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot
    def A145829gen(): # generator of terms
        m = 0
        for n in count(1):
            m ^= n**2
            a, b = integer_nthroot(m,2)
            if b: yield a
    A145829_list = list(islice(A145829gen(),20)) # Chai Wah Wu, Dec 16 2021