A145841 Number of 5-compositions of n.
1, 5, 40, 310, 2395, 18501, 142920, 1104060, 8528890, 65885880, 508970002, 3931805460, 30373291380, 234634403620, 1812556389540, 14002041536004, 108166106338760, 835585763004880, 6454920038905520, 49864411953151840, 385203777033190008, 2975708406629602400
Offset: 0
References
- G. Louchard, Matrix compositions: a probabilistic approach, Proceedings of GASCom and Bijective Combinatorics 2008, Bibbiena, Italy, pp. 159-170.
- E. Munarini, M. Poneti and S. Rinaldi, Matrix compositions, Proceedings of Formal Power Series and Algebraic Combinatorics 2006, San Diego, USA, J. Remmel, M. Zabrocki (Editors) 445-456.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Milan Janjić, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- E. Munarini, M. Poneti, and S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8.
- Index entries for linear recurrences with constant coefficients, signature (10,-20,20,-10,2).
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(j+4, 4), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Sep 01 2015
-
Mathematica
Table[Sum[Binomial[n+5*k-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Dec 31 2013 *)
Formula
a(n+5) = 10*a(n+4)-20*a(n+3)+20*a(n+2)-10*a(n+1)+2*a(n).
G.f.: (1-x)^5/(2*(1-x)^5-1).
a(n) = sum(k>=0, C(n+5*k-1,n) / 2^(k+1)). - Vaclav Kotesovec, Dec 31 2013
Extensions
Offset changed from 1 to 0 by Alois P. Heinz, Aug 31 2015
Comments