cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A146991 a(n)=sqrt(A145848(n)).

Original entry on oeis.org

7, 41, 380, 475, 506, 570, 759, 4901, 36050, 39845, 48700, 49964, 50281, 54075, 55973, 72100, 74946, 79690, 90125, 99928, 499001, 3200225, 3247660, 3497480, 3747300, 3905413, 3997120, 4246940, 4623250, 4803500, 4999561, 5002724
Offset: 1

Views

Author

Zak Seidov, Nov 04 2008

Keywords

Crossrefs

A145848 [From Zak Seidov, Nov 05 2008]

A146993 Number of terms in A145848 with exactly 2n decimal digits.

Original entry on oeis.org

1, 1, 5, 1, 12, 1, 24, 2, 47, 2, 53, 1, 70, 1
Offset: 1

Views

Author

Zak Seidov, Nov 04 2008

Keywords

Comments

It is shown by I. Bernshtein, see link, that a(2n+1)>=1 and 1<=a(2n)<=2. Thanks to Tanya Khovanova for this link.

Crossrefs

Extensions

Definition, comment, and a(11) corrected, and a(12)-a(14) added, by Jon E. Schoenfield, Nov 19 2008

A147608 Squares which are concatenation of two positive squares with possible intervening zeros.

Original entry on oeis.org

49, 169, 361, 1225, 1444, 1681, 3249, 4225, 4900, 9025, 15625, 16900, 36100, 42025, 49729, 64009, 81225, 93025, 105625, 122500, 144400, 168100, 225625, 237169, 256036, 324900, 422500, 490000, 519841, 576081, 819025, 902500, 950625, 970225
Offset: 1

Views

Author

Zak Seidov, Nov 08 2008

Keywords

Comments

A145848 is a subsequence.

Examples

			324 = 18^2, 9 = 3^2, 3249 = 324:9 = 57^2.
9 = 3^2, 25 = 5^2, 9025 = 9:0:25 = 95^2 (intervening zero).
		

Crossrefs

Cf. A039686 (variant with no intervening zeros).
Cf. A145848 (squares with an even number of digits, where the first half is a square and the second half is a nonzero square).

Programs

  • Mathematica
    s={}; Do[n2=n*n; id=IntegerDigits[n2]; Le=Length[id]; Do[If[IntegerQ/@Sqrt[FromDigits/@{Take[id,k], Drop[id,k]}] == {True,True}, If[FromDigits@Drop[id,k]>0, Print[n2]; AppendTo[s,n2]; Break[]]], {k,1,Le-1}], {n,4,10^4}]

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010
Definition corrected by David W. Wilson, Nov 22 2012

A216233 Numbers whose squares have 2R-1 digits, such that the number represented by leftmost R digits and number represented by rightmost R digits divide each other evenly.

Original entry on oeis.org

245, 249, 251, 255, 264, 1245, 1249, 2490, 2498, 2502, 2510, 10984, 12490, 12498, 15449, 18735, 18751, 18868, 22714, 24980, 24996, 27907, 28302, 31225, 31249, 31579, 101852, 124996, 139535, 152174, 187494, 187510, 218751, 238165, 249992, 279070, 281249
Offset: 1

Views

Author

Thomas S. Pedigo, Mar 14 2013

Keywords

Comments

Trivial solutions where the rightmost R digits are all zeros have been omitted. The first indices k for which the rightmost R digits of a(k)^2 do not contain leading zeros are 5, 12, 15, 19, 26, 27, 30, 34, 39, 52, 53, 62, 67, 80.

Examples

			The square of 22714 is 515925796, and 51592 = 2*25796.
		

Crossrefs

Programs

  • Mathematica
    cnt = 0; Do[p = 10^Floor[nd/2]; Do[x = Floor[n*n/p]; y = Mod[n*n, 10*p]; If[y>0 && Mod[x,y]*Mod[y,x] == 0, Print[++cnt, " ", n, " ", n*n]], {n, p, Floor[10^(nd/2)]}], {nd,3,11,2}] (* Giovanni Resta, Mar 15 2013 *)

Extensions

Missing a(25) and a(27)-a(37) from Giovanni Resta, Mar 15 2013
Comment corrected by Giovanni Resta, Mar 15 2013

A219542 Numbers n such that n^2 is a concatenation of 3 nonzero squares, leading zeros not allowed.

Original entry on oeis.org

12, 21, 37, 44, 107, 108, 120, 129, 191, 204, 209, 210, 223, 306, 315, 342, 343, 345, 370, 408, 413, 440, 501, 642, 696, 804, 955, 959, 982, 995, 1002, 1044, 1063, 1065, 1070, 1080, 1107, 1169, 1200, 1275, 1281, 1290, 1301, 1306, 1315, 1349, 1385, 1503, 1910
Offset: 1

Views

Author

Zak Seidov, Nov 22 2012

Keywords

Examples

			a(1) = 12: 12^2 = 144, 1 = 1^2, 4 = 2^2, 4 = 2^2;
a(1500) = 3176900^2 = 100, 9, 2693610000, 100 = 10^2, 9 = 3^2, 2693610000 = 51900^2.
		

Crossrefs

Showing 1-5 of 5 results.