cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145871 Smallest k such that k^2+1 is divisible by A002144(n)^7.

Original entry on oeis.org

32318, 6826318, 96940388, 7986582530, 24900904028, 92615568742, 416081467190, 988322434636, 3219884218827, 4867146503697, 26457926739667, 47023298541694, 26661771973542, 90980209992989, 257680081342861, 283410689912607
Offset: 1

Views

Author

Klaus Brockhaus, Oct 22 2008

Keywords

Examples

			a(2) = 6826318 since A002144(2) = 13, 6826318^2+1 = 46598617437125 = 5^3*13^7*13*457 and for no k < 6826318 does 13^7 divide k^2+1. a(4) = 7986582530 since A002144(4) = 29, 7986582530^2+1 = 63785500508501200901 = 29^7*197*409*45893 and for no k < 7986582530 does 29^7 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145298, A145299, A145872, A145873.

Programs

  • PARI
    {e=7; forprime(p=2, 40, if(p%4==1, q=p^e; m=q; while(!issquare(m-1, &n), m=m+q); print1(n, ",")))}

Extensions

More terms from Klaus Brockhaus, Nov 12 2008

A145872 Smallest k such that k^2+1 is divisible by A002144(n)^8.

Original entry on oeis.org

110443, 6826318, 3379649772, 61012922706, 1019349744435, 287369842623, 11331029931180, 71294762793847, 239822883201307, 923990886302412, 2369608176604944, 3156215819652023, 521749964271465, 2026364722410364
Offset: 1

Views

Author

Klaus Brockhaus, Oct 22 2008

Keywords

Examples

			a(1) = 110443 since A002144(1) = 5, 110443^2+1 = 12197656250 = 2*5^8*13*1201 and for no k < 110443 does 5^8 divide k^2+1. a(3) = 3379649772 since A002144(3) = 17, 3379649772^2+1 = 11422032581379651985 = 5*13*17^8*97*259697 and for no k < 3379649772 does 17^8 divide k^2+1.
		

Crossrefs

Cf. A002144 (primes of form 4n+1), A002313 (-1 is a square mod p), A059321, A145296, A145297, A145298, A145299, A145871, A145873.

Programs

  • PARI
    {e=8; forprime(p=2, 40, if(p%4==1, q=p^e; m=q; while(!issquare(m-1, &n), m=m+q); print1(n, ",")))}

Extensions

More terms from Klaus Brockhaus, Nov 12 2008
Showing 1-2 of 2 results.