cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145878 Triangle read by rows: T(n,k) is the number of permutations of [n] having k strong fixed points (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 14, 6, 3, 0, 1, 77, 29, 9, 4, 0, 1, 497, 160, 45, 12, 5, 0, 1, 3676, 1031, 249, 62, 15, 6, 0, 1, 30677, 7590, 1603, 344, 80, 18, 7, 0, 1, 285335, 63006, 11751, 2214, 445, 99, 21, 8, 0, 1, 2928846, 583160, 97056, 16168, 2865, 552, 119, 24
Offset: 0

Views

Author

Emeric Deutsch, Oct 29 2008

Keywords

Comments

A permutation p of {1,2,...,n} is said to have j as a strong fixed point (splitter) if p(k) < j for k < j and p(k) > j for k > j.
T(n,k) is also the number of permutation graphs on n vertices with exactly k distinct dominating sets of size one. See the link by Theresa Baren, et al. -Daniel A. McGinnis, Oct 16 2018
The values T(k+r,k) are given as a polynomial expression in k when r is fixed, and the polynomial expressions can be calculated recursively. See the link by Theresa Baren, et al. -Daniel A. McGinnis, Oct 19 2018

Examples

			T(5,3) = 4 because we have 1'2'3'54, 1'2'435', 1'324'5' and 213'4'5' (the strong fixed points are marked).
Triangle starts:
   1;
   0,  1;
   1,  0,  1;
   3,  2,  0,  1;
  14,  6,  3,  0,  1;
  77, 29,  9,  4,  0,  1;
		

References

  • Stanley, R. P., Enumerative Combinatorics, Volume 1 (1986), p. 49.

Crossrefs

Row sums gives A000142.

Programs

  • Maple
    n:=7: sfix:=proc(p) local ct,i: ct:= 0: for i to nops(p) do if p[i]=i and `subset`({seq(p[j],j=1..i-1)},{seq(k,k=1..i-1)})=true then ct:=ct+1 else end if end do: ct end proc: with(combinat): P:=permute(n): s:=[seq(sfix(P[j]),j= 1..factorial(n))]: for i from 0 to n do a[i]:=0 end do: for j to factorial(n) do if s[j]=0 then a[0]:=a[0]+1 elif s[j]=1 then a[1]:=a[1]+1 elif s[j]=2 then a[2]:=a[2]+1 elif s[j]=3 then a[3]:=a[3]+1 elif s[j]=4 then a[4]:=a[4]+1 elif s[j]=5 then a[5]:=a[5]+1 elif s[j]=6 then a[6]:=a[6]+1 elif s[j]=7 then a[7]:= a[7]+1 elif s[j]=8 then a[8]:=a[8]+1 elif s[j]=9 then a[9]:=a[9]+1 elif s[j]= 10 then a[10]:=a[10]+1 end if end do: seq(a[k],k=0..n); # yields row m of the triangle, where m is the value of n specified at the beginning of the program
    n:=7: G:=1:for r from n to 2 by -1 do G:=1-(2*r-1)*z-(r^2*z^2)/G:od:G:=1/(1-t*z-z^2/G):
    Gser := simplify(series(G, z = 0, n+1)): for m from 0 to n do seq(coeff(coeff(Gser, z, m), t, k), k = 0 .. m) end do; # based on P. Barry's g.f.; yields sequence in triangular form
  • Mathematica
    nn=10;p=Sum[n!x^n,{n,0,nn}];i=1-1/p;CoefficientList[Series[1/(1-(i-x+y x)),{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Apr 27 2012 *)

Formula

T(n,0) = A052186(n).
Sum_{k=1..n} T(n,k) = A006932(n).
Sum_{k=0..n} k*T(n,k) = A003149(n-1).
G.f.: 1/(1-xy-x^2/(1-3x-4x^2/(1-5x-9x^2/(1-7x-16x^2/(1-9x-25x^2/(1-... (continued fraction). - Paul Barry, Dec 09 2009
G.f.: 1/(1-(I(x)- x + y*x)) where I(x) is o.g.f. for A003319. - Geoffrey Critzer, Apr 27 2012
From Daniel A. McGinnis, Oct 15 2018: (Start)
T(n,k) = Sum_{i=1..n-k+1} T(n-i,k-1)*T(i-1,0).
T(3+k,k)=3k+3, T(4+k,k)=(k+1)(k+28)/2, T(5+k,k)=(k+1)(3k+77), T(6+k,k)=(k+1)(k^2+110k+2982)/6, T(7+k,k)=(k+1)(3k^2+235k+7352)/2 (previous conjectures).
See the link by Theresa Baren, et al. (End)