A145891 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k adjacent pairs of the form (odd,even) (0<=k<=floor(n/2)).
1, 1, 1, 1, 2, 4, 4, 16, 4, 12, 72, 36, 36, 324, 324, 36, 144, 1728, 2592, 576, 576, 9216, 20736, 9216, 576, 2880, 57600, 172800, 115200, 14400, 14400, 360000, 1440000, 1440000, 360000, 14400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
Offset: 0
Examples
T(3,1) = 4 because we have 123, 132, 312 and 321. Triangle starts: 1; 1; 1, 1; 2, 4; 4, 16, 4; 12, 72, 36; 36, 324, 324, 36; ...
Programs
-
Maple
T:=proc(n,k) if `mod`(n, 2) = 0 then factorial((1/2)*n)^2*binomial((1/2)*n, k)^2 else factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)*n+1/2, k) end if end proc: for n from 0 to 11 do seq(T(n,k), k =0..floor((1/2)*n)) end do; # yields sequence in triangular form
-
Mathematica
T[n_,k_]:=If[EvenQ[n],Floor[(n/2)!Binomial[n/2,k]]^2, ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2,k]Binomial[(n+1)/2,k]]; Table[T[n,k],{n,0,11},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)
Formula
T(2n,k) = [n!*C(n,k)]^2; T(2n+1,k) = n!*(n+1)!*C(n,k)*C(n+1,k).
Comments