cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145891 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k adjacent pairs of the form (odd,even) (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 4, 16, 4, 12, 72, 36, 36, 324, 324, 36, 144, 1728, 2592, 576, 576, 9216, 20736, 9216, 576, 2880, 57600, 172800, 115200, 14400, 14400, 360000, 1440000, 1440000, 360000, 14400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
Offset: 0

Views

Author

Emeric Deutsch, Nov 30 2008

Keywords

Comments

Also number of permutations of {1,2,...,n} having k adjacent pairs of the form (even,odd). Example: T(3,1) = 4 because we have 123, 213, 231 and 321.
Row n contains 1+floor(n/2) entries.
Mirror image of A134434.
Sum of entries in row n = n! = A000142(n).
Sum_{k>=0} k*T(n,k) = A077613(n).

Examples

			T(3,1) = 4 because we have 123, 132, 312 and 321.
Triangle starts:
   1;
   1;
   1,   1;
   2,   4;
   4,  16,   4;
  12,  72,  36;
  36, 324, 324, 36;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if `mod`(n, 2) = 0 then factorial((1/2)*n)^2*binomial((1/2)*n, k)^2 else factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)*n+1/2, k) end if end proc: for n from 0 to 11 do seq(T(n,k), k =0..floor((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_,k_]:=If[EvenQ[n],Floor[(n/2)!Binomial[n/2,k]]^2, ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2,k]Binomial[(n+1)/2,k]]; Table[T[n,k],{n,0,11},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)

Formula

T(2n,k) = [n!*C(n,k)]^2; T(2n+1,k) = n!*(n+1)!*C(n,k)*C(n+1,k).