A145891
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k adjacent pairs of the form (odd,even) (0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 4, 16, 4, 12, 72, 36, 36, 324, 324, 36, 144, 1728, 2592, 576, 576, 9216, 20736, 9216, 576, 2880, 57600, 172800, 115200, 14400, 14400, 360000, 1440000, 1440000, 360000, 14400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
Offset: 0
T(3,1) = 4 because we have 123, 132, 312 and 321.
Triangle starts:
1;
1;
1, 1;
2, 4;
4, 16, 4;
12, 72, 36;
36, 324, 324, 36;
...
-
T:=proc(n,k) if `mod`(n, 2) = 0 then factorial((1/2)*n)^2*binomial((1/2)*n, k)^2 else factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)*n+1/2, k) end if end proc: for n from 0 to 11 do seq(T(n,k), k =0..floor((1/2)*n)) end do; # yields sequence in triangular form
-
T[n_,k_]:=If[EvenQ[n],Floor[(n/2)!Binomial[n/2,k]]^2, ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2,k]Binomial[(n+1)/2,k]]; Table[T[n,k],{n,0,11},{k,0,Floor[n/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)
A152667
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k runs of even entries (n >= 2, 1 <= k <= floor(n/2)). For example, the permutation 321756498 has 3 runs of even entries: 2, 64 and 8.
Original entry on oeis.org
2, 6, 12, 12, 48, 72, 144, 432, 144, 720, 2880, 1440, 2880, 17280, 17280, 2880, 17280, 129600, 172800, 43200, 86400, 864000, 1728000, 864000, 86400, 604800, 7257600, 18144000, 12096000, 1814400, 3628800, 54432000, 181440000, 181440000, 54432000, 3628800
Offset: 2
T(4,2) = 12 because we have 1234, 3214, 1432, 3412, 2134, 2314 and their reverses.
Triangle starts:
2;
6;
12, 12;
48, 72;
144, 432, 144;
720, 2880, 1440;
-
ae := proc (n, k) options operator, arrow: factorial(n)^2*binomial(n+1, k)*binomial(n-1, k-1) end proc: ao := proc (n, k) options operator, arrow: factorial(n)*factorial(n+1)*binomial(n-1, k-1)*binomial(n+2, k) end proc: T := proc (n, k) if `mod`(n, 2) = 0 then ae((1/2)*n, k) else ao((1/2)*n-1/2, k) end if end proc; for n to 12 do seq(T(n, k), k = 1 .. floor((1/2)*n)) end do; # yields sequence in triangular form
-
T[n_, k_] := If[EvenQ[n], ((n/2)!)^2*Binomial[n/2+1, k]*Binomial[n/2-1, k-1], ((n-1)/2)!*((n-1)/2+1)!*Binomial[(n-1)/2-1, k-1]*Binomial[(n-1)/2+2, k]];
Table[T[n, k], {n, 2, 12}, {k, 1, Floor[n/2]}] // Flatten (* Jean-François Alcover, Sep 24 2024 *)
Showing 1-2 of 2 results.
Comments