cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145902 Triangular array: rows are the f-vectors of simplicial complexes dual to permutohedra of type D_n.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 14, 36, 24, 1, 48, 240, 384, 192, 1, 162, 1440, 4160, 4800, 1920, 1, 536, 8216, 38400, 76800, 69120, 23040, 1, 1738, 45528, 326032, 1008000, 1532160, 1128960, 322560, 1, 5536, 247456, 2634240, 11854080, 27095040, 33116160
Offset: 0

Views

Author

Peter Bala, Oct 29 2008

Keywords

Comments

The root systems of type D_n are only defined for n >= 2. It is convenient to add two initial rows to the array to give a lower triangular array. See A066094 for the corresponding array of h-vectors of type D permutohedra.

Examples

			The triangle begins
n\k|..0.....1.....2.....3.....4.....5
=====================================
0..|..1
1..|..1.....1
2..|..1.....4.....4
3..|..1....14....36....24
4..|..1....48...240...384...192
5..|..1...162..1440..4160..4800..1920
...
		

Crossrefs

Cf. A019538 (f-vectors type A permutohedra), A080254 (row sums), A066094 (h-vectors type D permutohedra), A145901 (f-vectors type B permutohedra).

Formula

E.g.f. : ((1 + x)*z - exp(z))/(x*exp(2*z) - (1 + x)) = 1 + x*z + (1 + 4*x + 4*x^2)*z^2/2! + (1 + 14*x + 36*x^2 + 24*x^3)*z^3/3! + ... .
Row sums A080254.

Extensions

Corrected typo. - Peter Bala, Oct 31 2008