A145917 Triangle read by rows: to get n-th row, start with -4n and successively add 5, 7, 9, 11, 13, ... until reaching a square.
0, -4, 1, -8, -3, 4, -12, -7, 0, 9, -16, -11, -4, 5, 16, -20, -15, -8, 1, 12, 25, -24, -19, -12, -3, 8, 21, 36, -28, -23, -16, -7, 4, 17, 32, 49, -32, -27, -20, -11, 0, 13, 28, 45, 64, -36, -31, -24, -15, -4, 9, 24, 41, 60, 81, -40, -35, -28, -19, -8, 5, 20, 37, 56, 77, 100
Offset: 0
Examples
As a triangle: 0; -4, 1; -8, -3, 4; -12, -7, 0, 9; -16, -11, -4, 5, 16; -20, -15, -8, 1, 12, 25; ... As an array: 0 -4 -8 -12 -16 -20 -24 1 -3 -7 -11 -15 -19 -23 4 0 -4 -8 -12 -16 -20 9 5 1 -3 -7 -11 -15 16 12 8 4 0 -4 -8 25 21 17 13 9 5 1 36 32 28 24 20 16 12
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations (of) Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Formula
From Boris Putievskiy, Jan 11 2013: (Start)
T(n,k) = n^2-4*k, n, k >= 0 array read by antidiagonals.
a(n) = (i-1)^2-4(j-1), n>0, where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, and t = floor((-1+sqrt(8*n-7))/2). (End)
Comments