A145985 Primes resulting from subtracting primes from 10^n in order (see Comments for precise definition).
7, 5, 3, 89, 83, 71, 59, 53, 47, 41, 29, 17, 11, 3, 887, 863, 827, 821, 809, 773, 761, 743, 719, 683, 653, 647, 641, 617, 599, 569, 557, 521, 509, 491, 479, 443, 431, 401, 383, 359, 353, 347, 317, 281, 257, 239, 227, 191, 179, 173, 137, 113, 89, 71, 59, 53, 47, 29, 23, 17, 3, 8969, 8951, 8849, 8837, 8819, 8807, 8783
Offset: 1
Examples
887 is a term because 1000-887 = 113 and both 887 and 113 are prime.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000 [First 1000 terms from _Harvey P. Dale_]
- N. J. A. Sloane, Table of n, a(n) for n = 1..80338
Crossrefs
Programs
-
Maple
a:=[]; for k from 1 to 6 do N := 10^k; for i from 10^(k-1)+1 to N-1 do j:=N-i; if isprime(i) and isprime(j) then a:=[op(a),j]; fi; od: od; a; # N. J. A. Sloane, Dec 16 2022
-
Mathematica
Select[Table[10^IntegerLength[p]-p,{p,Prime[Range[200]]}],PrimeQ] (* Harvey P. Dale, Dec 16 2022 *)
Extensions
Corrected and edited by Harvey P. Dale and N. J. A. Sloane, Dec 16 2022
Comments