A145992 Run lengths of 2 or more consecutive primes of the form 4k+3.
2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 7, 2, 2, 2, 2, 3, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 5, 5, 2, 2, 4, 2, 2, 3, 2, 2, 3, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 3, 2, 3, 4, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 1
Examples
a(1) = 2 counts the two 3's from A039702(4) to A039702(5). a(9) = 4 counts the four 3's from A039702(46) to A039702(49). a(14)= 7 counts the seven 4's from A039702(90) to A039702(96).
References
- Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A145992 := proc() local m,p,r,i ; m := 3 ; p := 2 ; r := 0 ; for i from 2 to 1000 do if modp(p,4) = m then r := r+1 ; else if r > 1 then printf("%d,",r) ; end if; r := 0; end if; p := nextprime(p) ; end do: end proc: A145992() ; # R. J. Mathar, Aug 29 2018
-
Mathematica
Most[Length /@ Select[ SplitBy[ Prime@ Range@ 780, Mod[#, 4] &], Mod[#[[1]], 4] == 3 && Length[#] > 1 &]] (* Giovanni Resta, Aug 29 2018 *) Length/@Select[Split[Table[If[Mod[n,4]==3,1,0],{n,Prime[Range[ 1000]]}]], FreeQ[ #,0]&]/.(1->Nothing) (* Harvey P. Dale, Jul 27 2020 *)
Extensions
Corrected by R. J. Mathar, Aug 29 2018