A146208 a(n) is the number of arithmetic progressions of 2 or more integers with product = n.
4, 6, 6, 4, 10, 4, 11, 8, 10, 4, 12, 4, 8, 12, 12, 4, 12, 4, 12, 10, 8, 4, 26, 6, 8, 9, 14, 4, 16, 4, 13, 8, 8, 10, 20, 4, 8, 8, 20, 4, 18, 4, 12, 16, 8, 4, 26, 6, 12, 8, 12, 4, 16, 10, 16, 8, 8, 4, 26, 4, 8, 14, 19, 8, 18, 4, 12, 8, 16, 4, 24, 4, 8, 12
Offset: 2
Examples
a(8) = 11 as we can have (x=-8,y=7,z=1; -8 * -1), (x=-4,y=2,z=1; -4 * -2), (x=-4,y=3,z=2; -4 * -1 * 2), (x=-2,y=-2,z=1; -2 * -4), (x=-1,y=-7,z=1; -1 * -8), (x=1,y=7,z=1; 1 * 8), (x=2,y=-3,z=2; 2 * -1 * -4), (x=2,y=0,z=2; 2 * 2 * 2), (x=2,y=2,z=1; 2 * 4), (x=4,y=-2,z=1; 4 * 2), (x=8,y=-7,z=1; 8 * 1). - Example added by _Antti Karttunen_, Feb 28 2023 a(9) = 8 as we can have (x=-3,y=0,z=1; -3 * -3), (x=3,y=0,z=1; 3 * 3), (x=-9,y=8,z=1; -9 * -1), (x=1,y=8,z=1; 1 * 9), (x=-1,y=-8,z=1; -1 * -9), (x=9,y=-8,z=1; 9 * 1), (x=3,y=-2,z=3; 3 * 1 * -1 * -3), (x=-3,y=2,z=3; -3 * -1 * 1 * 3).
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..10000
Programs
-
PARI
A146208(n) = sum(x=-n,n,sum(y=-n,n,sum(z=1,n,n==prod(k=0,z,x+(y*k))))); \\ (Slow!) - Antti Karttunen, Feb 28 2023
-
Python
from sympy import divisors def A146208(n): ds = divisors(n) c, s = 0, [-d for d in ds[::-1]]+ds for x in s: d2 = [d//x for d in ds if d%x==0] for y in (f-x for f in [-d for d in d2[::-1]]+d2): m, k = x*(z:=x+y), 1 while n >= abs(m) and k<=n: if n == m: c += 1 z += y m *= z k += 1 return c # Chai Wah Wu, May 11 2023
Comments