A146292 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A036041(n)), giving the number of divisors of A025487(n) with m prime factors (counted with multiplicity).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 2, 2, 2, 2
Offset: 1
Examples
Rows begin: 1; 1,1; 1,1,1; 1,2,1; 1,1,1,1; 1,2,2,1; 1,1,1,1,1;... 36's 9 divisors include 1 divisor with 0 total prime factors (1);, 2 with 1 (2 and 3); 3 with 2 (4, 6 and 9); 2 with 3 (12 and 18); and 1 with 4 (36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 2, 3, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 3k^2 + 2k^3 + (1)k^4 = (1 + k + k^2)(1 + k + k^2), derived from the prime factorization of 36 (namely, 2^2*3^2).
Links
- Anonymous?, Polynomial calculator
- Eric Weisstein's World of Mathematics, Roundness
- G. Xiao, WIMS server, Factoris (both expands and factors polynomials)
Crossrefs
Formula
If A025487(n)'s canonical factorization into prime powers is the product of p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (sum_{i=0..e} k^i).
Comments