A146308 a(n) is the smallest k such that the numerator of (k-6)/(2k) equals n.
6, 7, 14, 15, 22, 11, 78, 13, 38, 33, 46, 17, 150, 19, 62, 51, 70, 23, 222, 25, 86, 69, 94, 29, 294, 31, 110, 87, 118, 35, 366, 37, 134, 105, 142, 41, 438, 43, 158, 123, 166, 47, 510, 49, 182, 141, 190, 53, 582, 55, 206, 159, 214, 59, 654, 61, 230, 177, 238, 65, 726
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
Programs
-
Maple
f:= proc(n) if n mod 6 = 0 then 12*n+6 elif n::even then 4*n+6 elif n mod 3 = 0 then 3*n+6 else n+6 fi end proc: map(f, [$0..100]); # Robert Israel, Aug 05 2019
-
Mathematica
aa = {}; Do[k = 1; While[Numerator[(k - 6)/(2 k)] != n, k++ ]; AppendTo[aa, k], {n, 0, 100}]; aa
Formula
From Robert Israel, Aug 05 2019: (Start)
If 6 | n then a(n) = 12*n+6
else if 3 | n then a(n) = 3*n+6
else if 2 | n then a(n) = 2*n+6
else a(n) = n+6.
a(n) = 2*a(n-6) - a(n-12).
G.f.: (6 + 7*x + 14*x^2 + 15*x^3 + 22*x^4 + 11*x^5 + 66*x^6 - x^7 + 10*x^8 + 3*x^9 + 2*x^10 - 5*x^11)/(1 - 2*x^6 + x^12). (End)
Comments