cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146308 a(n) is the smallest k such that the numerator of (k-6)/(2k) equals n.

Original entry on oeis.org

6, 7, 14, 15, 22, 11, 78, 13, 38, 33, 46, 17, 150, 19, 62, 51, 70, 23, 222, 25, 86, 69, 94, 29, 294, 31, 110, 87, 118, 35, 366, 37, 134, 105, 142, 41, 438, 43, 158, 123, 166, 47, 510, 49, 182, 141, 190, 53, 582, 55, 206, 159, 214, 59, 654, 61, 230, 177, 238, 65, 726
Offset: 0

Views

Author

Artur Jasinski, Oct 29 2008

Keywords

Comments

a(n) = index of first occurrence n in A146306.
General formula:
2*cos(2*Pi/n) = Hypergeometric2F1((n-6)/(2n), (n+6)/(2n), 1/2, 3/4) = Hypergeometric2F1(A146306(n)/A146307(n), A146306(n+12)/A146307(n), 1/2, 3/4).
2*cos(2*Pi/n) is root of polynomial of degree = EulerPhi(n)/2 = A000010(n)/2 = A023022(n).

Crossrefs

Programs

  • Maple
    f:= proc(n) if n mod 6 = 0 then 12*n+6 elif n::even then 4*n+6 elif n mod 3 = 0 then 3*n+6 else n+6 fi end proc:
    map(f, [$0..100]); # Robert Israel, Aug 05 2019
  • Mathematica
    aa = {}; Do[k = 1; While[Numerator[(k - 6)/(2 k)] != n, k++ ]; AppendTo[aa, k], {n, 0, 100}]; aa

Formula

From Robert Israel, Aug 05 2019: (Start)
If 6 | n then a(n) = 12*n+6
else if 3 | n then a(n) = 3*n+6
else if 2 | n then a(n) = 2*n+6
else a(n) = n+6.
a(n) = 2*a(n-6) - a(n-12).
G.f.: (6 + 7*x + 14*x^2 + 15*x^3 + 22*x^4 + 11*x^5 + 66*x^6 - x^7 + 10*x^8 + 3*x^9 + 2*x^10 - 5*x^11)/(1 - 2*x^6 + x^12). (End)