A146335 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 11.
265, 541, 593, 661, 701, 857, 1061, 1109, 1217, 1237, 1709, 1733, 1949, 2333, 2509, 2557, 2957, 3125, 3229, 3677, 3701, 4181, 4373, 4685, 5081, 5237, 5309, 6133, 6425, 6445, 7013, 7025, 8185, 8545, 8693, 9305, 9533, 9553, 10333, 10525, 10853, 10961, 11125, 11141
Offset: 1
Keywords
Examples
a(4) = 661 because continued fraction of (1+sqrt(661))/2 = 13, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8 ... has period (2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25) length 11.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146335 := proc(n) RETURN(A146326(n) = 11) ; end: for n from 2 to 2000 do if isA146335(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Mathematica
Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 11 &] (* Amiram Eldar, Mar 31 2020 *)
Extensions
916 removed by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020
Comments