cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146335 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 11.

Original entry on oeis.org

265, 541, 593, 661, 701, 857, 1061, 1109, 1217, 1237, 1709, 1733, 1949, 2333, 2509, 2557, 2957, 3125, 3229, 3677, 3701, 4181, 4373, 4685, 5081, 5237, 5309, 6133, 6425, 6445, 7013, 7025, 8185, 8545, 8693, 9305, 9533, 9553, 10333, 10525, 10853, 10961, 11125, 11141
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146356.

Examples

			a(4) = 661 because continued fraction of (1+sqrt(661))/2 = 13, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25, 2, 1, 4, 2, 8, 8 ... has period (2, 1, 4, 2, 8, 8, 2, 4, 1, 2, 25) length 11.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146335 := proc(n) RETURN(A146326(n) = 11) ; end: for n from 2 to 2000 do if isA146335(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 11 &]  (* Amiram Eldar, Mar 31 2020 *)

Extensions

916 removed by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020