A146359 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 14: primes in A146337.
179, 251, 307, 347, 467, 587, 683, 1987, 5099, 5683, 7883, 8059, 8707, 12227, 14867, 15083, 15227, 22283, 34883, 40627, 42787, 47819, 50147, 51683, 68147, 73547, 78467, 84523, 84979, 89051, 95219, 104947, 106451, 107699, 132707, 134291, 142811, 149939, 164051
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A := proc(n) local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic,quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: isA146337 := proc(n) if A(n) = 14 then RETURN(true); else RETURN(false); fi; end: isA146359 := proc(n) RETURN(isprime(n) and isA146337(n)) ; end: for k from 1 do if isA146359(ithprime(k)) then printf("%d, ",ithprime(k)) ; fi; od: # R. J. Mathar, Nov 08 2008
-
Mathematica
Select[Range[2*10^4], PrimeQ[#] && Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 14 &] (* Amiram Eldar, Mar 30 2020 *)
Extensions
5813 and 6791 removed, extended beyond 8707 by R. J. Mathar, Nov 08 2008
More terms from Amiram Eldar, Mar 30 2020
Comments