A146338 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 15.
193, 281, 481, 1417, 1861, 1933, 2089, 2141, 2197, 2437, 2741, 2837, 3037, 3065, 3121, 3413, 3589, 3625, 3785, 3925, 3977, 4001, 4637, 4777, 4877, 5317, 5821, 5941, 6025, 6641, 6653, 6749, 7673, 8117, 8177, 8345, 10069, 10273, 10457, 11197, 11281, 11549, 11821
Offset: 1
Keywords
Examples
a(1) = 193 because continued fraction of (1+sqrt(193))/2 = 7, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, ... has period (2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13) length 15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146338 := proc(n) RETURN(A146326(n) = 15) ; end: for n from 2 to 4000 do if isA146338(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Sep 06 2009
-
Mathematica
Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 15 &] (* Amiram Eldar, Mar 31 2020 *)
Extensions
Extended beyond 3 terms by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020
Comments