cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146338 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 15.

Original entry on oeis.org

193, 281, 481, 1417, 1861, 1933, 2089, 2141, 2197, 2437, 2741, 2837, 3037, 3065, 3121, 3413, 3589, 3625, 3785, 3925, 3977, 4001, 4637, 4777, 4877, 5317, 5821, 5941, 6025, 6641, 6653, 6749, 7673, 8117, 8177, 8345, 10069, 10273, 10457, 11197, 11281, 11549, 11821
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146360.

Examples

			a(1) = 193 because continued fraction of (1+sqrt(193))/2 = 7, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, 2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13, ... has period (2, 4, 6, 1, 2, 1, 1, 1, 1, 2, 1, 6, 4, 2, 13) length 15.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end:
    isA146338 := proc(n) RETURN(A146326(n) = 15) ; end:
    for n from 2 to 4000 do if isA146338(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    Select[Range[10^4], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 15 &]  (* Amiram Eldar, Mar 31 2020 *)

Extensions

Extended beyond 3 terms by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 31 2020