cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146359 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 14: primes in A146337.

Original entry on oeis.org

179, 251, 307, 347, 467, 587, 683, 1987, 5099, 5683, 7883, 8059, 8707, 12227, 14867, 15083, 15227, 22283, 34883, 40627, 42787, 47819, 50147, 51683, 68147, 73547, 78467, 84523, 84979, 89051, 95219, 104947, 106451, 107699, 132707, 134291, 142811, 149939, 164051
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Crossrefs

Programs

  • Maple
    A := proc(n) local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic,quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: isA146337 := proc(n) if A(n) = 14 then RETURN(true); else RETURN(false); fi; end: isA146359 := proc(n) RETURN(isprime(n) and isA146337(n)) ; end: for k from 1 do if isA146359(ithprime(k)) then printf("%d, ",ithprime(k)) ; fi; od: # R. J. Mathar, Nov 08 2008
  • Mathematica
    Select[Range[2*10^4], PrimeQ[#] && Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 14 &] (* Amiram Eldar, Mar 30 2020 *)

Extensions

5813 and 6791 removed, extended beyond 8707 by R. J. Mathar, Nov 08 2008
More terms from Amiram Eldar, Mar 30 2020