cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146364 a(n) = smallest primes whose continued fraction have different period.

Original entry on oeis.org

2, 5, 7, 17, 19, 31, 41, 43, 73, 89, 103, 139, 151, 179, 191, 193, 211, 241, 271, 331, 337, 379, 409, 421, 433, 463, 487, 491, 521, 541, 571, 601, 619, 631, 673, 739, 751, 769, 823, 919, 929, 937, 1033, 1039, 1051, 1201, 1249, 1291, 1321, 1399, 1439, 1471, 1531, 1579, 1609, 1699, 1747, 1753, 1759
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

This sequence is sorted A146363.

Crossrefs

Programs

  • Maple
    g:= proc(n) local c;
          c:= NumberTheory:-ContinuedFraction((1+sqrt(n))/2);
          nops(Term(c,periodic)[2]);
    end proc:
    R:= NULL: S:= {}: count:= 0:
    p:= 1:
    while count < 100 do
      p:= nextprime(p);
      v:= g(p);
      if not member(v,S) then
        R:= R,p; count:= count+1; S:= S union {v};
        if count mod 20 = 0 then printf("%d %d\n",count,p) fi
      fi
    od:
    R; # Robert Israel, Jun 14 2024
  • Mathematica
    $MaxExtraPrecision = 300; s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[n])/2, 1000]; If[Length[k] < 190, AppendTo[aa, 0], m = 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; AppendTo[aa, m]], {n, 1, 1200}]; Print[aa]; bb = {}; Do[k = 1; yes = 0&&PeimeQ[k]; Do[If[aa[[k]] == n && yes == 0, AppendTo[bb, k]; yes = 1], {k, 1, Length[aa]}], {n, 1, 22}]; Sort[bb] (*Artur Jasinski*)

Extensions

More terms from Robert Israel, Jun 14 2024