cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146477 Numbers k for which A146326(k) is different from A146326(j) for j < k.

Original entry on oeis.org

2, 5, 6, 17, 18, 31, 41, 43, 73, 89, 94, 106, 118, 151, 172, 193, 211, 241, 265, 268, 331, 334, 337, 379, 394, 409, 421, 433, 463, 489, 521, 526, 601, 604, 619, 634, 673, 694, 718, 721, 751, 769, 886, 919, 929, 937, 1033, 1039, 1114, 1174, 1201, 1249, 1291, 1321, 1324, 1471, 1516, 1579, 1609
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

This sequence is sorted A146343.
Original name was: a(n) = smallest numbers which continued fractions have different period.

Crossrefs

Programs

  • Maple
    f:= proc(n) if issqr(n) then 0 else nops(numtheory:-cfrac((1+sqrt(n))/2,periodic,quotients)[2]) fi end proc:
    S:= {0}: R:= NULL: count:= 0:
    for n from 2 while count < 30 do
      v:= f(n);
      if not member(v,S) then
         count:= count+1; R:= R, n; S:= S union {v};
      fi
    od:
    R; # Robert Israel, May 02 2021
  • Mathematica
    $MaxExtraPrecision = 300; s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[n])/2, 1000]; If[Length[k] < 190, AppendTo[aa, 0], m = 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; AppendTo[aa, m]], {n, 1, 1200}]; Print[aa]; bb = {}; Do[k = 1; yes = 0; Do[If[aa[[k]] == n && yes == 0, AppendTo[bb, k]; yes = 1], {k, 1, Length[aa]}], {n, 1, 22}]; Sort[bb]

Extensions

19 replaced by 18, 331 and 334 inserted by R. J. Mathar, Nov 08 2008
Name clarified by Robert Israel, May 02 2021