A146477 Numbers k for which A146326(k) is different from A146326(j) for j < k.
2, 5, 6, 17, 18, 31, 41, 43, 73, 89, 94, 106, 118, 151, 172, 193, 211, 241, 265, 268, 331, 334, 337, 379, 394, 409, 421, 433, 463, 489, 521, 526, 601, 604, 619, 634, 673, 694, 718, 721, 751, 769, 886, 919, 929, 937, 1033, 1039, 1114, 1174, 1201, 1249, 1291, 1321, 1324, 1471, 1516, 1579, 1609
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..700
Programs
-
Maple
f:= proc(n) if issqr(n) then 0 else nops(numtheory:-cfrac((1+sqrt(n))/2,periodic,quotients)[2]) fi end proc: S:= {0}: R:= NULL: count:= 0: for n from 2 while count < 30 do v:= f(n); if not member(v,S) then count:= count+1; R:= R, n; S:= S union {v}; fi od: R; # Robert Israel, May 02 2021
-
Mathematica
$MaxExtraPrecision = 300; s = 10; aa = {}; Do[k = ContinuedFraction[(1 + Sqrt[n])/2, 1000]; If[Length[k] < 190, AppendTo[aa, 0], m = 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; s = s + 1; While[k[[s ]] != k[[s + m]] || k[[s + m]] != k[[s + 2 m]] || k[[s + 2 m]] != k[[s + 3 m]] || k[[s + 3 m]] != k[[s + 4 m]], m++ ]; AppendTo[aa, m]], {n, 1, 1200}]; Print[aa]; bb = {}; Do[k = 1; yes = 0; Do[If[aa[[k]] == n && yes == 0, AppendTo[bb, k]; yes = 1], {k, 1, Length[aa]}], {n, 1, 22}]; Sort[bb]
Extensions
19 replaced by 18, 331 and 334 inserted by R. J. Mathar, Nov 08 2008
Name clarified by Robert Israel, May 02 2021
Comments