A146564 a(n) is the number of solutions of the equation k*n/(k-n) = c. k,c integers.
1, 4, 4, 7, 4, 13, 4, 10, 7, 13, 4, 22, 4, 13, 13, 13, 4, 22, 4, 22, 13, 13, 4, 31, 7, 13, 10, 22, 4, 40, 4, 16, 13, 13, 13, 37, 4, 13, 13, 31, 4, 40, 4, 22, 22, 13, 4, 40, 7, 22, 13, 22, 4, 31, 13, 31, 13, 13, 4, 67, 4, 13, 22, 19, 13, 40, 4, 22, 13, 40, 4, 52
Offset: 1
Examples
For n=7 we search the number of integer solutions of the equation 7*k/(k-7). This holds for k from {6,8,14,56}. Then a(7)=4. For n=10 we search the number of integer solutions of the equation 10*k/(k-10). This holds for k from {5,6,8,9,11,12,14,15,20,30,35,60,110}. Then a(10)=13.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Umberto Cerruti, Percorsi tra i numeri (in Italian), pages 2-4.
Crossrefs
Cf. A191973.
Programs
-
Magma
[# [k:k in {1..n^2+n} diff {n}| IsIntegral(k*n/(k-n))]:n in [1..75]]; // Marius A. Burtea, Oct 18 2019
-
Maple
A146564 := proc(n) local b,d,k,c ; b := numtheory[divisors](n^2) ; kbag := {} ; for d in b do k := d+n ; if k > 0 then kbag := kbag union {k} ; fi ; k := -d+n ; if k > 0 then kbag := kbag union {k} ; fi; end do; RETURN(nops(kbag)) ; end: for n from 1 to 800 do printf("%d,",A146564(n)) ; od: # R. J. Mathar, Nov 21 2008
-
Mathematica
psi[n_] := Module[{pp, ee}, {pp, ee} = Transpose[FactorInteger[n]]; If[Max[pp] == 3, n, Times@@(pp+1) * Times@@(pp^(ee-1))]]; a[n_] := Sum[psi[2^PrimeNu[d]], {d, Divisors[n]}]-1; a /@ Range[72] (* Jean-François Alcover, Jan 18 2020 *)
-
PARI
jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d)); dedekindpsi(n)=jordantot(n,2)/eulerphi(n); A146564(n)=sumdiv(n, d, dedekindpsi(2^omega(d))); for(n=1, 200, print(n" "A146564(n))) \\ Enrique Pérez Herrero, Apr 14 2012
Formula
Conjecture: a(n) = A048691(n)+A063647(n). - R. J. Mathar, Nov 21 2008 (See Corollary 4 in Cerruti's paper.)
a(n) = Sum_{d|n} psi(2^omega(d)), where psi is A001615 and omega is A001221. - Enrique Pérez Herrero, Apr 13 2012
Extensions
Extended beyond a(11) by R. J. Mathar, Nov 21 2008
Comments