cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146564 a(n) is the number of solutions of the equation k*n/(k-n) = c. k,c integers.

Original entry on oeis.org

1, 4, 4, 7, 4, 13, 4, 10, 7, 13, 4, 22, 4, 13, 13, 13, 4, 22, 4, 22, 13, 13, 4, 31, 7, 13, 10, 22, 4, 40, 4, 16, 13, 13, 13, 37, 4, 13, 13, 31, 4, 40, 4, 22, 22, 13, 4, 40, 7, 22, 13, 22, 4, 31, 13, 31, 13, 13, 4, 67, 4, 13, 22, 19, 13, 40, 4, 22, 13, 40, 4, 52
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 01 2008

Keywords

Comments

In general, if n is a prime p then a(p)=4, and k is from {p-1, p+1, 2*p, p^2+p}.
In general, if n is a squared prime p^2 then a(p^2)=7, and k is from {p^2-p, p^2-1, p^2+1, p^2+p, p^3-p^2, p^3+p^2, p^4+p^2}.
The sequence counts solutions with k>0 and any sign of c, or, alternatively, solutions with c>0 and any sign of k. If solutions were constrained to k>0 and c>0, A048691 would result. - R. J. Mathar, Nov 21 2008

Examples

			For n=7 we search the number of integer solutions of the equation 7*k/(k-7). This holds for k from {6,8,14,56}. Then a(7)=4. For n=10 we search the number of integer solutions of the equation 10*k/(k-10). This holds for k from {5,6,8,9,11,12,14,15,20,30,35,60,110}. Then a(10)=13.
		

Crossrefs

Cf. A191973.

Programs

  • Magma
    [# [k:k in {1..n^2+n} diff {n}| IsIntegral(k*n/(k-n))]:n in [1..75]]; // Marius A. Burtea, Oct 18 2019
  • Maple
    A146564 := proc(n) local b,d,k,c ; b := numtheory[divisors](n^2) ; kbag := {} ; for d in b do k := d+n ; if k > 0 then kbag := kbag union {k} ; fi ; k := -d+n ; if k > 0 then kbag := kbag union {k} ; fi; end do; RETURN(nops(kbag)) ; end: for n from 1 to 800 do printf("%d,",A146564(n)) ; od: # R. J. Mathar, Nov 21 2008
  • Mathematica
    psi[n_] := Module[{pp, ee}, {pp, ee} = Transpose[FactorInteger[n]]; If[Max[pp] == 3, n, Times@@(pp+1) * Times@@(pp^(ee-1))]];
    a[n_] := Sum[psi[2^PrimeNu[d]], {d, Divisors[n]}]-1;
    a /@ Range[72] (* Jean-François Alcover, Jan 18 2020 *)
  • PARI
    jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
    dedekindpsi(n)=jordantot(n,2)/eulerphi(n);
    A146564(n)=sumdiv(n, d, dedekindpsi(2^omega(d)));
    for(n=1, 200, print(n" "A146564(n))) \\ Enrique Pérez Herrero, Apr 14 2012
    

Formula

Conjecture: a(n) = A048691(n)+A063647(n). - R. J. Mathar, Nov 21 2008 (See Corollary 4 in Cerruti's paper.)
a(n) = Sum_{d|n} psi(2^omega(d)), where psi is A001615 and omega is A001221. - Enrique Pérez Herrero, Apr 13 2012

Extensions

Extended beyond a(11) by R. J. Mathar, Nov 21 2008