A146879 Minimal degree of X_1(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 5, 3, 4, 4, 7, 4, 5, 6, 6, 6, 11, 6, 12, 8, 10, 10, 12, 8, 18, 12, 14, 12
Offset: 1
Examples
a(20)<=3 because y^3+(x^2+3)y^2+(x^3+4)y+2=0 is an explicit plane model for X_1(20) and a(20)=3 because it is not 1 or 2 (these are all known).
Links
- Daeyeol Jeon, Chang Heon Kim and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arithmetica 113 (2004), pp. 291-301.
- Mark van Hoeij, Upper bounds
- J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes elliptiques, J. Number Theory, vol. 13, 1981, pp. 123-137
- Markus Reichert, Explicit Determination of Nontrivial Torsion Structures of Elliptic Curves Over Quadratic Number Fields, Math. Comp. 46 (1986), pp. 637-658.
- Andrew V. Sutherland, Constructing elliptic curves with prescribed torsion over finite fields, preprint, arXiv:0811.0296 [math.NT], 2008-2012.
- A. V. Sutherland, Notes on torsion subgroups of elliptic curves over number fields, 2012. - From _N. J. A. Sloane_, Feb 02 2013
- A. V. Sutherland, Torsion subgroups of elliptic curves over number fields, 2012. - From _N. J. A. Sloane_, Feb 03 2013
Crossrefs
Cf. A029937.
Comments