cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147298 Minimum of rad(m (n - m) n) for 0 < m < n, gcd(m,n) = 1, where rad(k) = A007947(k) = product of prime factors of k.

Original entry on oeis.org

2, 6, 6, 10, 30, 42, 14, 6, 30, 66, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 322, 138, 30, 130, 30, 42, 174, 870, 186, 30, 66, 510, 210, 210, 222, 1254, 546, 390, 246, 1722, 258, 946, 330, 690, 1410, 282, 42, 70, 510, 390, 742, 210, 330, 770, 570, 1218
Offset: 2

Views

Author

Artur Jasinski, Nov 05 2008

Keywords

Comments

Function rad(k) is used in ABC conjecture applications.
For biggest values of function rad(m n (n - m)) see A147299.
For numbers m for which rad(m n (n - m)) reached minimal value see A147300.
For numbers m for which rad(m n (n - m)) reached maximal value see A147301.
Sequence in each value Log[n]/Log[A147298(n)] reached records see A147302.

Crossrefs

Programs

  • Maple
    A147298 := proc(n) local rad, g, L;
    rad := n -> mul(k, k in numtheory:-factorset(n)):
    g := (n, k) -> `if`(igcd(n, k) = 1, 1, infinity):
    L := n -> [seq(g(n,k)*rad(n*k*(n-k)), k=1..n/2)]:
    min(L(n)) end: seq(A147298(n), n=2..58); # Peter Luschny, Aug 06 2019
  • Mathematica
    logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; aa (*Artur Jasinski*)
    Table[Min[Times @@ FactorInteger[#][[All, 1]] & /@ ((m = Select[Range[1, n - 1], GCD[n, #] == 1 &])*(n - m)*n)], {n, 2, 58}] (* Ivan Neretin, May 21 2015 *)
  • PARI
    A147298(n)= local(m=n^2); for( a=1,n\2, gcd(a,n)>1 && next; A007947(n-a)*A007947(a)A007947(n-a)*A007947(a)); m*A007947(n)