A147299 a(n) = largest value of the function rad(m*n*(n - m)) n=2,3,4,..., 0 < m < n where the function rad(k) (also called radical(k)) is the product of distinct prime divisors of k.
2, 6, 6, 30, 30, 70, 30, 42, 210, 330, 210, 546, 462, 390, 110, 1190, 462, 1482, 910, 2310, 2310, 2990, 858, 770, 4290, 546, 2730, 6090, 6630, 7378, 510, 8778, 9690, 10010, 1938, 12210, 13566, 14586, 3990, 17138, 18354, 19866, 10626, 7590, 22678
Offset: 2
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; gg \ = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; AppendTo[bb, max]; AppendTo[cc, mmax]; AppendTo[dd, mmin]; AppendTo[gg, ile]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 129}]; bb (* Artur Jasinski *) Table[Max[Times @@ FactorInteger[#][[All, 1]] & /@ ((m = Range[1, n - 1])*(n - m)*n)], {n, 2, 46}] (* Ivan Neretin, May 21 2015 *)
Comments