A147541 Result of using the primes as coefficients in an infinite polynomial series in x and then expressing this series as (1+x)(1+a(1)*x)(1+a(2)*x^2) ... .
1, 2, 1, 3, 2, -4, 2, 5, 4, -6, 4, 4, 10, -36, 18, 45, 34, -72, 64, -24, 124, -358, 258, 170, 458, -1260, 916, 148, 1888, -4296, 3690, 887, 7272, -17616, 14718, -5096, 29610, -67164, 58722, -26036, 119602, -244496, 242256, -104754, 487352, -1029384
Offset: 1
Keywords
Examples
From the primes, construct the series 1+2x+3x^2+5x^3+7x^4+... Divide this by (1+x) to get the quotient (1+a(1)x+...), which here gives a(1)=1. Then divide this quotient by (1+a(1)x), i.e. here (1+x), to get (1+a(2)x^2+...), giving a(2)=2.
Links
- H. Gingold, A note on reduction of operations via power product approximations, Utilitas Math. 37 (1990), 79-89. [From _R. J. Mathar_, Nov 10 2008]
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239. [From _R. J. Mathar_, Nov 10 2008]
- H. Gingold, A. Knopfmacher and D. Lubinsky, The zero distribution of the partial products of power product expansions, Analysis 13 (1993), 133-157. [From _R. J. Mathar_, Nov 10 2008]
Programs
-
Maple
From R. J. Mathar, Feb 01 2010: (Start) # Partition n into a set of distinct positive integers, the maximum one # being m. # Example: partitionsQ(7,5) returns [[2,5],[3,4],[1,2,4]] ; # Richard J. Mathar, 2008-11-10 partitionsQ := proc(n,m) local p,t,rec,q; p := [] ; # take 't' of the n and recursively determine the partitions of # what has been left over. for t from min(m,n) to 1 by -1 do # Since we are only considering partitions into distinct parts, # the triangular numbers set a lower bound on the t. if t*(t+1)/2 >= n then rec := partitionsQ(n-t,t-1) ; if nops(rec) = 0 then p := [op(p),[t]] ; else for q in rec do p := [op(p),[op(q),t]] ; end do: end if; end if; end do: RETURN(p) ; end proc: # Power product expansion of L. # L is a list starting with 1, which is considered L[0]. # Returns the list [a(1),a(2),..] such that # product_(i=1,2,..) (1+a(i)x^i) = sum_(j=0,1,2,...) L[j]x^j. # Richard J. Mathar, 2008-11-10 ppe := proc(L) local pro,i,par,swithi,snoti,m,p,k ; pro := [] ; for i from 1 to nops(L)-1 do par := partitionsQ(i,i) ; swithi := 0 ; snoti := 0 ; for p in par do if i in p then m := 1 ; for k from 1 to nops(p)-1 do m := m*op(op(k,p),pro) ; end do; swithi := swithi+m ; else snoti := snoti+mul( op(k,pro),k=p) ; end if; end do: pro := [op(pro), (op(i+1,L)-snoti)/swithi] ; end do: RETURN(pro) ; end proc: read("transforms") ; A147541 := proc(nmax) local L,L1,L2 ; L := [1,seq(ithprime(n),n=1..nmax)] ; L1 := [seq((-1)^n,n=0..nmax+10)] ; A036467 := CONV(L,L1) ; ppe(A036467) ; end: A147541(47) ; (End)
Extensions
Extended by R. J. Mathar, Feb 01 2010
Comments