cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147541 Result of using the primes as coefficients in an infinite polynomial series in x and then expressing this series as (1+x)(1+a(1)*x)(1+a(2)*x^2) ... .

Original entry on oeis.org

1, 2, 1, 3, 2, -4, 2, 5, 4, -6, 4, 4, 10, -36, 18, 45, 34, -72, 64, -24, 124, -358, 258, 170, 458, -1260, 916, 148, 1888, -4296, 3690, 887, 7272, -17616, 14718, -5096, 29610, -67164, 58722, -26036, 119602, -244496, 242256, -104754, 487352, -1029384
Offset: 1

Views

Author

Neil Fernandez, Nov 06 2008

Keywords

Comments

This is the PPE (power product expansion) of A036467. - R. J. Mathar, Feb 01 2010

Examples

			From the primes, construct the series 1+2x+3x^2+5x^3+7x^4+... Divide this by (1+x) to get the quotient (1+a(1)x+...), which here gives a(1)=1. Then divide this quotient by (1+a(1)x), i.e. here (1+x), to get (1+a(2)x^2+...), giving a(2)=2.
		

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Feb 01 2010: (Start)
    # Partition n into a set of distinct positive integers, the maximum one
    # being m.
    # Example: partitionsQ(7,5) returns [[2,5],[3,4],[1,2,4]] ;
    # Richard J. Mathar, 2008-11-10
    partitionsQ := proc(n,m)
    local p,t,rec,q;
    p := [] ;
    # take 't' of the n and recursively determine the partitions of
    # what has been left over.
    for t from min(m,n) to 1 by -1 do
    # Since we are only considering partitions into distinct parts,
    # the triangular numbers set a lower bound on the t.
    if t*(t+1)/2 >= n then
    rec := partitionsQ(n-t,t-1) ;
    if nops(rec) = 0 then
    p := [op(p),[t]] ;
    else
    for q in rec do
    p := [op(p),[op(q),t]] ;
    end do:
    end if;
    end if;
    end do:
    RETURN(p) ;
    end proc:
    # Power product expansion of L.
    # L is a list starting with 1, which is considered L[0].
    # Returns the list [a(1),a(2),..] such that
    # product_(i=1,2,..) (1+a(i)x^i) = sum_(j=0,1,2,...) L[j]x^j.
    # Richard J. Mathar, 2008-11-10
    ppe := proc(L)
    local pro,i,par,swithi,snoti,m,p,k ;
    pro := [] ;
    for i from 1 to nops(L)-1 do
    par := partitionsQ(i,i) ;
    swithi := 0 ;
    snoti := 0 ;
    for p in par do
    if i in p then
    m := 1 ;
    for k from 1 to nops(p)-1 do
    m := m*op(op(k,p),pro) ;
    end do;
    swithi := swithi+m ;
    else
    snoti := snoti+mul( op(k,pro),k=p) ;
    end if;
    end do:
    pro := [op(pro), (op(i+1,L)-snoti)/swithi] ;
    end do:
    RETURN(pro) ;
    end proc:
    read("transforms") ;
    A147541 := proc(nmax)
    local L,L1,L2 ;
    L := [1,seq(ithprime(n),n=1..nmax)] ;
    L1 := [seq((-1)^n,n=0..nmax+10)] ;
    A036467 := CONV(L,L1) ;
    ppe(A036467) ;
    end:
    A147541(47) ;
    (End)

Extensions

Extended by R. J. Mathar, Feb 01 2010