cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147544 Coefficient of x^n in product (1+x)*Product_{j>=1} (1 + prime(j)*x^j).

Original entry on oeis.org

3, 5, 14, 28, 57, 126, 239, 436, 830, 1616, 2806, 4975, 8578, 14914, 26825, 45148, 73742, 124446, 205326, 333878, 560588, 903857, 1431876, 2275324, 3633808, 5713071, 9019922, 14309452, 22104630, 34018220, 52450816, 80023048, 122423244, 186079122, 282089161, 431595854, 647808336, 966099832, 1442708500
Offset: 1

Views

Author

Neil Fernandez, Nov 06 2008

Keywords

Examples

			(1+x)*(1+2*x)*(1+3*x^2)*(1+5*x^3)*(1+7*x^4)*(1+11*x^5) ... = 1 + 3*x + 5*x^2 + 14*x^3 + 28*x^4 + 57*x^5 + 126*x^6 + 239*x^7 + 436*x^8 + 830*x^9 + 1616*x^10 + ..., so the sequence begins 3, 5, 14, ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 51); Coefficients(R!( (1+x)*(&*[1+NthPrime(j)*x^j: j in [1..52]])-1 )); // G. C. Greubel, Oct 28 2022
    
  • Mathematica
    With[{m=51}, Rest@CoefficientList[Series[(1+x)*Product[(1+Prime[j]*x^j), {j,m+2}], {x,0,m}], x]] (* G. C. Greubel, Oct 28 2022 *)
  • SageMath
    def A147544_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1+x)*product(1+nth_prime(j)*x^j for j in range(1,53)) ).list()
    a=A147544_list(51); a[1:]  # G. C. Greubel, Oct 28 2022

Formula

G.f.: -1 + (1+x)*Product_{j>=1} (1 + prime(j)*x^j).

Extensions

Terms a(11) onward corrected by G. C. Greubel, Oct 28 2022