A147562 Number of "ON" cells at n-th stage in the "Ulam-Warburton" two-dimensional cellular automaton.
0, 1, 5, 9, 21, 25, 37, 49, 85, 89, 101, 113, 149, 161, 197, 233, 341, 345, 357, 369, 405, 417, 453, 489, 597, 609, 645, 681, 789, 825, 933, 1041, 1365, 1369, 1381, 1393, 1429, 1441, 1477, 1513, 1621, 1633, 1669, 1705, 1813, 1849, 1957, 2065, 2389, 2401, 2437, 2473
Offset: 0
Examples
If we label the generations of cells turned ON by consecutive numbers we get a rosetta cell pattern: . . . . . . . . . . . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . . . 4 3 4 . . . . . . . . . . . . . 4 . 2 . 4 . . . . . . . . . . . 4 3 2 1 2 3 4 . . . . . . . . . . . 4 . 2 . 4 . . . . . . . . . . . . . 4 3 4 . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . In the first generation, only the central "1" is ON, a(1)=1. In the next generation, we turn ON four "2", leading to a(2)=a(1)+4=5. In the third generation, four "3" are turned ON, a(3)=a(2)+4=9. In the fourth generation, each of the four wings allows three 4's to be turned ON, a(4)=a(3)+4*3=21. From _Omar E. Pol_, Feb 18 2015: (Start) Also, written as an irregular triangle T(j,k), j>=0, k>=1, in which the row lengths are the terms of A011782: 1; 5; 9, 21; 25, 37, 49, 85; 89, 101,113,149,161,197,233,341; 345,357,369,405,417,453,489,597,609,645,681,789,825,933,1041,1365; ... The right border gives the positive terms of A002450. (End) It appears that T(j,k) = A162795(j,k) = A169707(j,k), if k is a power of 2, for example: it appears that the three mentioned triangles only share the elements from the columns 1, 2, 4, 8, 16, ... - _Omar E. Pol_, Feb 20 2015
References
- S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 928.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- David Applegate, The movie version
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Steven R. Finch, Toothpicks and Live Cells, July 21, 2015. [Cached copy, with permission of the author]
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 31.
- Bradley Klee, Log-periodic coloring of the first quadrant, over the chair tiling.
- Omar E. Pol, Illustration of initial terms (Fig. 1: one-step rook - the current sequence), (Fig. 2: one-step bishop), (Fig. 3: overlapping squares), (Fig. 4: overlapping X-toothpicks), (2009), (Fig. 5: overlapping circles), (2010)
- Omar E. Pol, Illustration of initial terms of A139250, A160120, A147562 (overlapping figures), (2009).
- David Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7. Also scanned annotated cached copy, included with permission.
- N. J. A. Sloane, Illustration of terms 0 through 9
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021
- N. J. A. Sloane and Brady Haran, Terrific Toothpick Patterns, Numberphile video (2018).
- Mike Warburton, Ulam-Warburton Automaton - Counting Cells with Quadratics, arXiv:1901.10565 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
Crossrefs
Programs
-
Maple
Since this is the partial sum sequence of A147582, it is most easily obtained using the Maple code given in A147582. # [x,y] coordinates of cells on Lse := [[0,0]] ; # enclosing rectangle of the cells on (that is, minima and maxima in Lse) xmin := 0 ; xmax := 0 ; ymin := 0 ; ymax := 0 ; # count neighbors of x,y which are on; return 0 if [x,y] is in L cntnei := proc(x,y,L) local a,p,xpt,ypt; a := 0 ; if not [x,y] in L then for p in Lse do xpt := op(1,p) ; ypt := op(2,p) ; if ( abs(xpt-x) = 1 and ypt=y ) or ( x=xpt and abs(ypt-y) = 1) then a := a+1 ; fi; od: fi: RETURN(a) ; end: # loop over generations/steps for stp from 1 to 10 do Lnew := [] ; for x from xmin-1 to xmax+1 do for y from ymin-1 to ymax+1 do if cntnei(x,y,Lse) = 1 then Lnew := [op(Lnew),[x,y]] ; fi; od: od: for p in Lnew do xpt := op(1,p) ; ypt := op(2,p) ; xmin := min(xmin,xpt) ; xmax := max(xmax,xpt) ; ymin := min(ymin,ypt) ; ymax := max(ymax,ypt) ; od: Lse := [op(Lse),op(Lnew)] ; print(nops(Lse)) ;
-
Mathematica
Join[{0},Map[Function[Apply[Plus,Flatten[ #1]]],CellularAutomaton[{686,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},200]]] (* Nadia Heninger and N. J. A. Sloane, Aug 11 2009; modified by Paolo Xausa, Aug 12 2022 to include the a(0) term *) ArrayPlot /@ CellularAutomaton[{686, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 16] (* N. J. A. Sloane, Nov 08 2014 *) A147562list[nmax_]:=Accumulate[Join[{0,1},4*3^(DigitCount[Range[nmax-1],2,1]-1)]];A147562list[100] (* Paolo Xausa, May 21 2023 *)
-
PARI
a(n) = if (n, 1 + 4*sum(k=1, n-1, 3^(hammingweight(k)-1)), 0); \\ Michel Marcus, Jul 05 2022
Formula
a(n) = 1 + 4*Sum_{k=1..n-1} 3^(wt(k)-1) for n>1, where wt() = A000120(). [Corrected by Paolo Xausa, Aug 12 2022]
For asymptotics see the discussion in the comments in A006046. - N. J. A. Sloane, Mar 11 2021
From Omar E. Pol, Mar 13 2011: (Start)
a(n) = 2*A151917(n) - 1, for n >= 1.
a(n) = 1 + 4*A151920(n-2), for n >= 2.
(End)
It appears that a(n) = A162795(n) = A169707(n), if n is a member of A048645, otherwise a(n) < A162795(n) < A169707(n). - Omar E. Pol, Feb 20 2015
It appears that a(n) = A151920(2n-2), n >= 1. - Omar E. Pol, Mar 06 2015
It appears that a(n) = (A130665(2n-1) - 1)/3, n >= 1. - Omar E. Pol, Mar 07 2015
a(n) = 1 + 4*(A130665(n-1) - 1)/3, n >= 1. Omar E. Pol, Mar 07 2015
a(n) = A323650(2n)/3. - Omar E. Pol, Mar 04 2019
Extensions
Offset and initial terms changed by N. J. A. Sloane, Jun 07 2009
Numbers in the comment adapted to the offset by R. J. Mathar, Mar 03 2010
Comments