cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147610 a(n) = 3^(wt(n-1)-1), where wt() = A000120().

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 9, 1, 3, 3, 9, 3, 9, 9, 27, 1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 3, 9, 9, 27, 9, 27, 27, 81, 9, 27, 27, 81, 27, 81, 81, 243, 1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81, 3, 9, 9, 27, 9, 27, 27, 81, 9
Offset: 2

Views

Author

N. J. A. Sloane, Apr 29 2009

Keywords

Comments

a(n) = A147582(n)/4.

Examples

			When written as a triangle:
.1,
.1,3,
.1,3,3,9,
.1,3,3,9,3,9,9,27,
.1,3,3,9,3,9,9,27,3,9,9,27,9,27,27,81,
.1,3,3,9,3,9,9,27,3,9,9,27,9,27,27,81,3,9,9,27,9,27,27,81,9,27,27,81,27,81,81,243,
....
Rows converge to A048883. Row sums give A000302. Partial sums give A151920.
		

Crossrefs

Programs

Formula

a(n) = 3^A048881(n-2). - R. J. Mathar, Apr 30 2009
Recurrence: Write n = 2^i + 1 + j, 0 <= j < 2^i. Then a(2^i+1) = 1; for j>0, a(2^i+j+1) = 3*a(j+1). - N. J. A. Sloane, Jun 09 2009
G.f.: x*(Product_{k>=0} (1 + 3*x^(2^k)) - 1)/3. - N. J. A. Sloane, Jun 10 2009

Extensions

Extended by R. J. Mathar, Apr 30 2009
Offset corrected by N. J. A. Sloane, Jun 09 2009
Further edited by N. J. A. Sloane, Aug 06 2009