cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363228 Exponent of 4 in 9^n - 1.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 1

Views

Author

Ruud H.G. van Tol, May 21 2023

Keywords

Comments

Not the same as A147648-without-zeros.

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerExponent[2*n, 4] + 1; Array[a, 100] (* Amiram Eldar, May 22 2023 *)
  • PARI
    a(n) = valuation(2*n, 4) + 1;
    
  • Python
    def A363228(n): return (~n&n-1).bit_length()+3>>1 # Chai Wah Wu, Jul 09 2023

Formula

a(n) = floor(A090739(n)/2).
a(n) = A244415(n) + 1.
a(n) = A235127(A024101(n)). - Michel Marcus, May 21 2023
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/3. - Amiram Eldar, Jul 13 2023
Conjecture: a(n) = A235127(A000045(6*n)), all other 4-adic 6-sections A235127(A000045(.))=0. - R. J. Mathar, Jun 28 2025
Showing 1-1 of 1 results.