A147664 G.f. satisfies: A(x/A(x)) = 1 + x*A(x)^2.
1, 1, 3, 15, 100, 801, 7296, 73174, 791751, 9116613, 110640310, 1405349658, 18585016509, 254855278565, 3612425924919, 52793266545585, 793851646358364, 12261570084250926, 194260753173421656, 3153098224666860712
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 100*x^4 + 801*x^5 + 7296*x^6 +... A(x)^2 = 1 + 2*x + 7*x^2 + 36*x^3 + 239*x^4 + 1892*x^5 + 17019*x^6 +... A(x/A(x)) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 239*x^5 + 1892*x^6 +... A(x) = 1 + x*G(x)^3 where G(x) = A(x*G(x)) is the g.f. of A182953: G(x) = 1 + x + 4*x^2 + 25*x^3 + 197*x^4 + 1797*x^5 + 18178*x^6 +... To illustrate the formula a(n) = [x^(n-1)] 3*A(x)^(n+2)/(n+2), form a table of coefficients in A(x)^(n+2) as follows: A^3: [(1), 3, 12, 64, 426, 3345, 29766, 291999, ...]; A^4: [1, (4), 18, 100, 671, 5244, 46248, 449264, ...]; A^5: [1, 5, (25), 145, 985, 7686, 67305, 648085, ...]; A^6: [1, 6, 33, (200), 1380, 10782, 93922, 897402, ...]; A^7: [1, 7, 42, 266, (1869), 14658, 127246, 1207753, ...]; A^8: [1, 8, 52, 344, 2466, (19456), 168604, 1591496, ...]; A^9: [1, 9, 63, 435, 3186, 25335, (219522), 2063052, ...]; ... in which the main diagonal forms the initial terms of this sequence: [3/3*(1), 3/4*(4), 3/5*(25), 3/6*(200), 3/7*(1869), 3/8*(19456), ...]. ALTERNATE GENERATING METHOD. This sequence forms column zero in the follow array. Let A denote this sequence, and A^2 the self-convolution square of A. Start in row zero with A^2, after prepending an initial '1', then repeat: drop the initial term and perform convolution with A and the remaining terms in a given row to obtain the next row: [1, 1, 2, 7, 36, 239, 1892, 17019, 168746, 1807656, 20634852, 248560373, ...]; [1, 3, 12, 64, 426, 3345, 29766, 291999, 3097746, 35059659, 419160576,...]; [3, 15, 85, 571, 4443, 38952, 376090, 3930156, 43875903, 518191486, ...]; [15, 100, 701, 5494, 47883, 457451, 4724372, 52138050, 609215321, ...]; [100, 801, 6495, 56980, 542331, 5558082, 60793521, 704009142, ...]; [801, 7296, 65878, 630811, 6448878, 70124397, 806356465, 9749112990, ...]; [7296, 73174, 718577, 7386763, 80183478, 917721557, 11031656810, ...]; [73174, 791751, 8324862, 90823582, 1038161379, 12431200320, 155525155360, ...]; ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..385
Programs
-
PARI
{a(n)=local(F=1+x,G);for(i=0,n,G=serreverse(x/(F+x*O(x^n))^1)/x;F=1+x*G^3);polcoeff(F,n)}
-
PARI
/* This sequence is generated when k=1, m=2: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n, k=1, m=2)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)+x*O(x^n)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))} for(n=0,20,print1(a(n),", "))
-
PARI
/* Prints terms 0..30 */ {A=[1]; for(m=1,30, B=Vec(Ser(A)^2); for(i=1,m-1, C=Vec(Ser(A)*Ser(B)); B=vector(#C-1,n,C[n+1]) ); A=concat(A,0); A[#A]=B[1]; ); A} \\ Paul D. Hanna, Jan 10 2016
Formula
G.f.: A(x) = 1 + x*G(x)^3 where G(x) = A(x*G(x)) and A(x) = G(x/A(x)) is the g.f. of A182953.
a(n) = [x^(n-1)] 3*A(x)^(n+2)/(n+2) for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in 3*A(x)^(n+2)/(n+2) for n>=1 (see comment).
Comments