cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147716 Triangle of coefficients in expansion of (14 + x)^n.

Original entry on oeis.org

1, 14, 1, 196, 28, 1, 2744, 588, 42, 1, 38416, 10976, 1176, 56, 1, 537824, 192080, 27440, 1960, 70, 1, 7529536, 3226944, 576240, 54880, 2940, 84, 1, 105413504, 52706752, 11294304, 1344560, 96040, 4116, 98, 1, 1475789056, 843308032, 210827008, 30118144, 2689120, 153664, 5488, 112, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2008

Keywords

Comments

Triangle T(n,k), read by rows, given by [14, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
       1;
      14,      1;
     196,     28,     1;
    2744,    588,    42,    1;
   38416,  10976,  1176,   56,  1;
  537824, 192080, 27440, 1960, 70, 1;
		

Crossrefs

Sequences of the form q^(n-k)*binomial(n, k): A007318 (q=1), A038207 (q=2), A027465 (q=3), A038231 (q=4), A038243 (q=5), A038255 (q=6), A027466 (q=7), A038279 (q=8), A038291 (q=9), A038303 (q=10), A038315 (q=11), A038327 (q=12), A133371 (q=13), this sequence (q=14), A027467 (q=15).

Programs

  • Magma
    [14^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 15 2021
    
  • Mathematica
    With[{m=8}, CoefficientList[CoefficientList[Series[1/(1-14*x-x*y), {x, 0, m}, {y, 0, m}], x], y]]//Flatten (* Georg Fischer, Feb 17 2020 *)
  • Sage
    flatten([[14^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021

Formula

T(n,k) = binomial(n,k) * 14^(n-k).
G.f.: 1/(1 - 14*x - x*y). - R. J. Mathar, Aug 12 2015
Sum_{k=0..n} T(n, k) = 15^n = A001024(n). - G. C. Greubel, May 15 2021

Extensions

a(36) corrected by Georg Fischer, Feb 17 2020