A147716 Triangle of coefficients in expansion of (14 + x)^n.
1, 14, 1, 196, 28, 1, 2744, 588, 42, 1, 38416, 10976, 1176, 56, 1, 537824, 192080, 27440, 1960, 70, 1, 7529536, 3226944, 576240, 54880, 2940, 84, 1, 105413504, 52706752, 11294304, 1344560, 96040, 4116, 98, 1, 1475789056, 843308032, 210827008, 30118144, 2689120, 153664, 5488, 112, 1
Offset: 0
Examples
Triangle begins : 1; 14, 1; 196, 28, 1; 2744, 588, 42, 1; 38416, 10976, 1176, 56, 1; 537824, 192080, 27440, 1960, 70, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
[14^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 15 2021
-
Mathematica
With[{m=8}, CoefficientList[CoefficientList[Series[1/(1-14*x-x*y), {x, 0, m}, {y, 0, m}], x], y]]//Flatten (* Georg Fischer, Feb 17 2020 *)
-
Sage
flatten([[14^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 15 2021
Formula
T(n,k) = binomial(n,k) * 14^(n-k).
G.f.: 1/(1 - 14*x - x*y). - R. J. Mathar, Aug 12 2015
Sum_{k=0..n} T(n, k) = 15^n = A001024(n). - G. C. Greubel, May 15 2021
Extensions
a(36) corrected by Georg Fischer, Feb 17 2020
Comments