cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A147724 a(n) = C(3,n) DELTA C(0,n).

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 25, 33, 9, 1, 172, 238, 78, 13, 1, 1201, 1745, 667, 139, 17, 1, 8404, 12807, 5583, 1376, 216, 21, 1, 58825, 93841, 45822, 12950, 2429, 309, 25, 1, 411772, 686288, 370108, 117458, 25366, 3890, 418, 29, 1, 2882401, 5009889, 2951034, 1035834, 251583, 44607, 5823, 543, 33, 1
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle [1,3,3,1,0,0,0,...] DELTA [1,0,0,0,...] with Deléham DELTA as in A084938.
First column is A034494(n-1). Row sums are A147725. A147724 = A147723*A007318.

Examples

			Triangle begins
    1;
    1,   1;
    4,   5,   1;
   25,  33,   9,   1;
  172, 238,  78,  13,   1;
		

Crossrefs

Cf. A147721.

Programs

  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 7*x + 3*x^2)/(1 - 8*x + 7*x^2 - x*y + 4*x^2*y) , {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017 *)

Formula

Riordan array ((1-7*x+3*x^2)/(1-8*x+7*x^2), x*(1-4*x)/(1-8*x+7*x^2)).
G.f.: (1 - 7*x + 3*x^2)/(1 - 8*x + 7*x^2 - x*y + 4*x^2*y). - Philippe Deléham, Oct 29 2013
T(n,k) = 8*T(n-1,k) + T(n-1,k-1) - 7*T(n-2,k) - 4*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 4, T(2,1) = 5, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 29 2013
Showing 1-1 of 1 results.