cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147725 Row sums of triangle in A147724.

Original entry on oeis.org

1, 2, 10, 68, 502, 3770, 28408, 214202, 1615330, 12181748, 91867102, 692804690, 5224704088, 39401485202, 297141621850, 2240858259428, 16899166494502, 127443057596810, 961096686931768, 7247996548821002, 54659905383139570
Offset: 0

Views

Author

Philippe Deléham, Nov 15 2008

Keywords

Formula

a(n)=9*a(n-1)-11*a(n-2) for n>2, a(0)=1, a(1)=2, a(2)=10. G.f.: (1-7x+3x^2)/(1-9x+11x^2).

A147723 Riordan array (1, x(1 - 4x)/(1 - 7x + 3x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 18, 6, 1, 0, 117, 45, 9, 1, 0, 765, 342, 81, 12, 1, 0, 5004, 2556, 702, 126, 15, 1, 0, 32733, 18810, 5859, 1224, 180, 18, 1, 0, 214119, 136719, 47493, 11241, 1935, 243, 21, 1
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

[0,3,3,1,0,0,0,....] DELTA [1,0,0,0,...] with Deléham DELTA as in A084938. A147723*A007318 is A147724.

Examples

			Triangle begins
  1;
  0,   1;
  0,   3,   1;
  0,  18,   6,   1;
  0, 117,  45,   9,   1;
  0, 765, 342,  81,  12,   1;
  ...
		

Crossrefs

Cf. A147720.

Programs

  • Mathematica
    T[0,0] = T[1,1]= T[2,2] = 1; T[1,0] = T[2,0] = 0; T[2,1] = 3; T[n_, k_]:= If[k<0 || k>n, 0, 7 T[n - 1, k] + T[n - 1, k - 1] - 3 T[n - 2, k] - 4 T[n - 2, k - 1]]; Flatten[Table[ T[n, k], {n, 0, 8}, {k, 0, n}]] (* Indranil Ghosh, Mar 10 2017, after Philippe Deléham *)
  • PARI
    T(n, k)= if(n==k, 1, if(k==0, 0, if(n==2 && k==1, 3, if(k<0 || k>n, 0, 7*T(n - 1, k) + T(n - 1, k - 1) - 3*T(n - 2, k) - 4*T(n - 2, k - 1)))));
    {for(n=0, 8, for(k=0, n, print1(T(n,k),", ");); print();); } \\ Indranil Ghosh, Mar 10 2017

Formula

G.f.: (1 - 7*x + 4*x^2)/(1 - (7+y)*x + (3+4*y)*x^2). - Philippe Deléham, Jan 11 2012
T(n,k) = 7*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 4*T(n-2,k-1), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(2,1) = 3, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 02 2013
Showing 1-2 of 2 results.