cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A319670 a(n) = [x^n] Product_{k>=2} 1/(1 - x^k)^n.

Original entry on oeis.org

1, 0, 2, 3, 14, 30, 119, 301, 1078, 3036, 10242, 30624, 100451, 310128, 1004817, 3158343, 10182982, 32345186, 104145896, 332953929, 1072383374, 3442913407, 11100120528, 35742258497, 115377720235, 372326184555, 1203406838428, 3890040945078, 12588182588373, 40748118469180
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2018

Keywords

Comments

Number of partitions of n into parts > 1, if there are n kinds of parts.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^n , {k, 2, n}], {x, 0, n}], {n, 0, 29}]
    Table[SeriesCoefficient[((1 - x)/QPochhammer[x])^n, {x, 0, n}], {n, 0, 29}]
    Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, k] - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 29}]

Formula

a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(k) - 1)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 3.293558598422332665054219310876308... and c = 0.2154241499279313950113565475... - Vaclav Kotesovec, Oct 06 2018

A147767 Triangle read by rows, square of A116598.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 2, 2, 0, 1, 5, 2, 2, 0, 1, 6, 5, 2, 2, 0, 1, 6, 5, 2, 2, 0, 1, 13, 6, 5, 2, 2, 0, 1, 16, 13, 6, 5, 2, 2, 0, 1, 30, 16, 13, 6, 5, 2, 2, 0, 1, 40, 30, 16, 13, 6, 5, 2, 2, 0, 1, 40, 30, 16, 13, 6, 5, 2, 2, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 11 2008

Keywords

Comments

Row sums = A000990: (1, 1, 3, 5, 10, 16, 29, 45, ...).

Examples

			First few rows of the triangle:
   1;
   0,  1;
   2,  0, 1;
   2,  2, 0, 1;
   5,  2, 2, 0, 1;
   6,  5, 2, 2, 0, 1;
  13,  6, 5, 2, 2, 0, 1;
  16, 13, 6, 5, 2, 2, 0, 1;
  ...
		

Crossrefs

Formula

Triangle read by rows, A116598^2. A147766 in every column.

Extensions

Typo in formula corrected by Olivier Gérard, Jul 25 2016
Showing 1-2 of 2 results.