A147809 Half the number of proper divisors (> 1) of n^2 + 1, i.e., tau(n^2 + 1)/2 - 1.
0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 0, 1, 0, 3, 2, 1, 0, 3, 1, 3, 0, 1, 0, 3, 1, 1, 1, 3, 2, 3, 1, 1, 0, 3, 2, 1, 0, 2, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 3, 0, 3, 0, 7, 1, 1, 1, 1, 1, 3, 1, 1, 0, 3, 3, 1, 2, 1, 3, 7, 0, 3, 1, 3, 1, 1, 1, 3, 2, 7, 0, 1, 1, 3, 1, 3, 0, 3, 1, 5, 0, 1, 1, 3, 3, 5
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
DivisorSigma[0,Range[100]^2+1]/2-1 (* Harvey P. Dale, Feb 11 2015 *)
-
PARI
A147809(n)=numdiv(n^2+1)/2-1
Formula
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Dec 01 2023
Comments