cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147809 Half the number of proper divisors (> 1) of n^2 + 1, i.e., tau(n^2 + 1)/2 - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 0, 1, 0, 3, 2, 1, 0, 3, 1, 3, 0, 1, 0, 3, 1, 1, 1, 3, 2, 3, 1, 1, 0, 3, 2, 1, 0, 2, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 3, 0, 3, 0, 7, 1, 1, 1, 1, 1, 3, 1, 1, 0, 3, 3, 1, 2, 1, 3, 7, 0, 3, 1, 3, 1, 1, 1, 3, 2, 7, 0, 1, 1, 3, 1, 3, 0, 3, 1, 5, 0, 1, 1, 3, 3, 5
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2008

Keywords

Comments

For any n > 0, n^2 + 1 cannot be a square and thus has an even number of divisors which always include 1 and n^2 + 1, therefore a(n) = (half that number minus 1) is always a nonnegative integer.

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,Range[100]^2+1]/2-1 (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    A147809(n)=numdiv(n^2+1)/2-1

Formula

a(n) = A000005(A002522(n))/2 - 1 = A147810(n) - 1.
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Dec 01 2023