cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A147807 Partial sums of A147810(n) = tau(n^2 + 1)/2.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 11, 13, 15, 16, 18, 20, 24, 25, 27, 28, 32, 35, 37, 38, 42, 44, 48, 49, 51, 52, 56, 58, 60, 62, 66, 69, 73, 75, 77, 78, 82, 85, 87, 88, 91, 93, 99, 101, 103, 105, 113, 115, 117, 119, 121, 123, 127, 128, 132, 133, 141, 143, 145, 147, 149, 151, 155, 157
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2008

Keywords

Comments

Also, number of inequivalent (i.e., q < r) integer solutions to 1/pqr = 1/p - 1/q - 1/r with p <= n; cf. A147811.

Crossrefs

Programs

  • Mathematica
    Accumulate[DivisorSigma[0, Range[64]^2 + 1]/2] (* Amiram Eldar, Oct 25 2019 *)
  • PARI
    s=0;A147807=vector(99,n,s+=numdiv(n^2+1))/2

Formula

a(n) = Sum_{p = 1..n} tau(1 + p^2)/2 = n + A147806(n) > n.
a(n) ~ c * n * log(n), where c = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Dec 01 2023

A147809 Half the number of proper divisors (> 1) of n^2 + 1, i.e., tau(n^2 + 1)/2 - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 0, 1, 0, 3, 2, 1, 0, 3, 1, 3, 0, 1, 0, 3, 1, 1, 1, 3, 2, 3, 1, 1, 0, 3, 2, 1, 0, 2, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 3, 0, 3, 0, 7, 1, 1, 1, 1, 1, 3, 1, 1, 0, 3, 3, 1, 2, 1, 3, 7, 0, 3, 1, 3, 1, 1, 1, 3, 2, 7, 0, 1, 1, 3, 1, 3, 0, 3, 1, 5, 0, 1, 1, 3, 3, 5
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2008

Keywords

Comments

For any n > 0, n^2 + 1 cannot be a square and thus has an even number of divisors which always include 1 and n^2 + 1, therefore a(n) = (half that number minus 1) is always a nonnegative integer.

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,Range[100]^2+1]/2-1 (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    A147809(n)=numdiv(n^2+1)/2-1

Formula

a(n) = A000005(A002522(n))/2 - 1 = A147810(n) - 1.
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Dec 01 2023

A147811 Alexandrian integers: numbers of the form n=pqr such that 1/n = 1/p - 1/q - 1/r for some integers p,q,r.

Original entry on oeis.org

6, 42, 120, 156, 420, 630, 930, 1428, 1806, 2016, 2184, 3192, 4950, 5256, 8190, 8364, 8970, 10296, 10998, 12210, 17556, 19110, 21114, 23994, 24492, 28050, 32640, 33306, 34362, 37506, 39270, 44310, 52326, 57684, 57840, 70686, 74256, 79800, 83076
Offset: 1

Views

Author

M. F. Hasler and Alexis Olson (AlexisOlson(AT)gmail.com), Dec 13 2008

Keywords

Comments

The numbers are of the form p(p+d)(p+(p^2+1)/d), where d runs over divisors of p^2+1 and p runs over all positive integers. See also A147807..A147810. - M. F. Hasler, Jan 07 2009

Examples

			630 is an Alexandrian integer since 630 = 5(-7)(-18) and 1/630 = 1/5 - 1/7 - 1/18.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    A:= select(`<=`,{seq(seq(p*(p+d)*(p+(p^2+1)/d), d=numtheory:-divisors(p^2+1)),p=1..floor(N^(1/3)))},N):
    sort(convert(A,list)); # Robert Israel, Dec 16 2018
  • PARI
    is_A147811(n) = { my(d=divisors(n), c=#d+1); n<42 && return(n==6); for( i=2, c-3, d[i+1]^2>d[c-i] && return; d[c-i]%d[i]==1 | next; for( j=i+1, c-i,d[j]^2>d[c-i] && next(2); d[c-i]\d[j]*(d[j]-d[i]) == d[j]*d[i]+1 && return(1))) }

A147806 Partial sums of A147809(n) = tau(n^2 + 1)/2 - 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 4, 5, 6, 6, 7, 8, 11, 11, 12, 12, 15, 17, 18, 18, 21, 22, 25, 25, 26, 26, 29, 30, 31, 32, 35, 37, 40, 41, 42, 42, 45, 47, 48, 48, 50, 51, 56, 57, 58, 59, 66, 67, 68, 69, 70, 71, 74, 74, 77, 77, 84, 85, 86, 87, 88, 89, 92, 93, 94, 94, 97, 100, 101, 103, 104, 107
Offset: 1

Views

Author

M. F. Hasler, Dec 13 2008

Keywords

Comments

It seems that a(10^n) = (6, 168, 2754, 38561, 495569, ...) ~ 1.1*(n-0.5)*10^n; otherwise said, a(n) ~ 1.1*(log_10(n)-0.5)*n, asymptotically.
The exact value of the coefficient above is 3*log(10)/(2*Pi) = 1.09940339... . - Amiram Eldar, Dec 01 2023

Crossrefs

Programs

  • Mathematica
    Accumulate[DivisorSigma[0, Range[72]^2 + 1]/2 - 1] (* Amiram Eldar, Oct 25 2019 *)
  • PARI
    s=0;a147806=vector(99,n,s+=numdiv(n^2+1))/2
    A147806(n)=sum(p=1,n,numdiv(n^2+1))/2-n

Formula

a(n) = A147807(n) - n.
a(n) ~ c * n * log(n), where c = 3/(2*Pi) = 0.477464... (A093582). - Amiram Eldar, Dec 01 2023
Showing 1-4 of 4 results.