A147972 Smallest prime p modulo which the first n primes are nonzero quadratic residues.
7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 366791, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 120293879, 131486759, 131486759, 2929911599, 2929911599, 7979490791, 23616331489, 23616331489, 89206899239, 121560956039, 196265095009, 196265095009, 513928659191, 5528920734431, 8402847753431, 8402847753431, 8402847753431, 70864718555231
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
(*version 7.0*)m=1;P=7;Lst={p};While[m<25,m++;S=Prime[Range[m]];While[MemberQ[JacobiSymbol[S,p],-1],p=NextPrime[p]];Lst=Append[Lst,P]];Lst (* Emmanuel Vantieghem, Jan 31 2012 *)
-
PARI
t=2;forprime(p=2,1e9,forprime(q=2,t,if(kronecker(q,p)<1,next(2)));print1(p", ");t=nextprime(t+1);p--) \\ Charles R Greathouse IV, Jan 31 2012
Formula
Extensions
a(23)-a(25) from Emmanuel Vantieghem, Jan 31 2012
a(26)-a(37) from Max Alekseyev, Aug 21 2015
Comments