A147980 Given a set of positive integers A={1,2,...,n-1,n}, n>=2. Take subsets of A of the form {1,...,n} so only subsets containing numbers 1 and n are allowed. Then a(1)=1 and a(n) is the number of subsets where arithmetic mean of the subset is an integer.
1, 0, 2, 0, 4, 4, 8, 12, 28, 44, 84, 156, 288, 540, 1020, 1904, 3616, 6860, 13024, 24836, 47448, 90772, 174072, 334348, 643112, 1238928, 2389956, 4615916, 8925808, 17278680, 33482196, 64944060, 126083448, 244989096, 476416560, 927167752, 1805691728, 3519062820
Offset: 1
Keywords
Examples
n=5, A={1,2,3,4,5}. Subsets of A starting with 1 and ending with 5 are : {1,5}, {1,2,5}, {1,3,5}, {1,4,5}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {1,2,3,4,5}. Arithmetic mean of the subset is an integer for subsets : {1,5}, {1,3,5}, {1,2,4,5}, {1,2,3,4,5}. Thus a(5) = 4. The value of the arithmetic mean is 3 for all 4 subsets.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
- Eric Weisstein's World of Mathematics, Arithmetic mean
Crossrefs
Cf. A140480.
Programs
-
Maple
b:= proc(i,s,c) option remember; `if` (i=1, `if` (irem (s, c)=0, 1, 0), b(i-1, s, c)+ b(i-1, s+i, c+1)) end: a:= n-> `if` (n=1, 1, b (n-1, n+1, 2)): seq (a(n), n=1..40); # Alois P. Heinz, May 06 2010
-
Mathematica
b[i_, s_, c_] := b[i, s, c] = If[i==1, If[Mod[s, c]==0, 1, 0], b[i-1, s, c] + b[i-1, s+i, c+1]]; a[n_] := If[n==1, 1, b[n-1, n+1, 2]]; Array[a, 40] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, May 06 2010
Comments