A148140 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (-1, 0, 1), (0, 1, -1), (1, 0, 0)}.
1, 1, 2, 4, 11, 29, 79, 239, 717, 2308, 7297, 24044, 80190, 272169, 937998, 3238896, 11395781, 40306202, 144327012, 518753441, 1877343545, 6847992964, 25113561672, 92664740665, 342898523397, 1275918429545, 4768716120748, 17899948765010, 67407916028455, 254582546853587, 965161647585492, 3670755986440919
Offset: 0
Links
- A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899.
Programs
-
Mathematica
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]