cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A150500 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, -1, 1), (0, 1, 0), (1, 1, -1), (1, 1, 1)}.

Original entry on oeis.org

1, 2, 7, 25, 101, 416, 1787, 7792, 34645, 155722, 707795, 3242515, 14963665, 69458000, 324102287, 1519028843, 7147771981, 33750528146, 159860887355, 759295147045, 3615520821281, 17255165910632, 82521746019487, 395404081034830, 1897886817388201, 9124229781131546, 43930513066698367, 211803668881914847
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Crossrefs

Cf. A201805.

Programs

  • Mathematica
    aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, -1 + k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

Formula

a(n) = (A201805(n+1) + 3*A201805(n))/4. - Mark van Hoeij, Nov 29 2024