cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151093 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, 0, -1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}.

Original entry on oeis.org

1, 3, 11, 43, 177, 751, 3263, 14421, 64613, 292639, 1337295, 6156635, 28523245, 132861795, 621783139, 2921870183, 13780286589, 65201337703, 309392108399, 1471944790095, 7019341847821, 33545270688803, 160625969491971, 770511786145853, 3702199537395337, 17815681545802971, 85853558110277963
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Programs

  • Mathematica
    aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[1 + i, j, 1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]

Formula

E.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*exp(x). - Mélika Tebni, Feb 07 2025