A151548 When A160552 is regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., this is what the rows converge to.
1, 3, 5, 7, 5, 11, 17, 15, 5, 11, 17, 19, 21, 39, 49, 31, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 63, 5, 11, 17, 19, 21, 39, 49, 35, 21, 39, 53, 59, 81, 127, 129, 67, 21, 39, 53, 59, 81, 127, 133, 91, 81, 131, 165, 199, 289, 383, 321, 127, 5, 11, 17, 19, 21, 39
Offset: 0
Keywords
Examples
From _Omar E. Pol_, Jul 24 2009: (Start) When written as a triangle: 1; 3; 5,7; 5,11,17,15; 5,11,17,19,21,39,49,31; 5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,63; 5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,67,21,39,53,59,81,127,133,91,... (End)
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
Programs
-
Maple
G := 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..20); # N. J. A. Sloane, May 23 2009 S2:=proc(n) option remember; local i,j; if n <= 1 then RETURN(2*n+1); fi; i:=floor(log(n)/log(2)); j:=n-2^i; if j=0 then 5 elif j=2^i-1 then 2*n+1 else 2*S2(j)+S2(j+1); fi; end; # - N. J. A. Sloane, May 22 2009
-
Mathematica
terms = 70; CoefficientList[1/(1 + x) + 4*x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* Jean-François Alcover, Nov 14 2017, after N. J. A. Sloane *)
Formula
a(2^k-1) = 2^(k+1)-1 for k >= 0; otherwise a(2^k) = 5 for k >= 1; otherwise a(2^i+j) = 2a(j)+a(j+1) for i >= 2, 1 <= j <= 2^i-2. - N. J. A. Sloane, May 22 2009
G.f.: 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..oo). - N. J. A. Sloane, May 23 2009
a(n) = A147646(n) - a(n-1), n >= 1. - Omar E. Pol, Feb 19 2015
Comments