A151659 Terminal point of the repeated application of usigma starting at 2^n.
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 8, 4, 4, 4, 4, 8, 4, 4, 2, 4, 4, 8, 4, 8, 8, 4, 4, 4, 4, 8, 8, 4, 8, 4, 8, 4, 8, 8, 16, 8, 8, 16, 4, 8, 16, 8, 32, 16, 8, 8, 8, 8, 32, 8, 16, 8, 32, 16, 32, 8, 16, 16, 16, 32, 16, 16, 16, 8, 16, 16, 16, 16, 16, 8, 16, 16, 8, 16, 16, 64, 8, 32, 32, 16
Offset: 0
Keywords
Examples
The irregular table of the sequences b(.) is in row n=0,1,2,... represented by 1; 2, 3, 1; 4, 5, 3, 1; 8, 9, 5, 3, 1; 16, 17, 9, 5, 3, 1; 32, 33, 3, 1; 64, 65, 21, 1; 128, 129, 11, 3, 1; The associated table of the sequences c(.) in row n=0,1,2,... is 1; 2, 2, 1/2; 4, 4, 2, 1/2; 8, 8, 4, 2, 1/2; 16, 16, 8, 4, 2, 1/2; 32, 32, 2, 1/2; 64, 64, 16, 1/2; The reciprocals of the final entries in the rows give the sequence.
Links
- R. J. Mathar, Table of n, a(n) for n = 0..130 [Received Aug 30, 2009]
Programs
-
Maple
A034448 := proc(n) local ans, i: ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: ans ; end: A000265 := proc(n,p) option remember; local nshf ; nshf := n ; while (nshf mod p ) = 0 do nshf := nshf/p ; od: nshf ; end: A006519 := proc(n) local nshf,a ; a := 1; nshf := n ; while (nshf mod 2 ) = 0 do nshf := nshf/2 ; a := a*2 ; od: a ; end: A161946 := proc(n) option remember; A000265(A034448(n),2) ; end: A151659 := proc(n) local b,a ; b := [2^n] ; while op(-1,b) <> 1 do b := [op(b), A161946(op(-1,b)) ] ; od: a := 2^n ; for k from 2 to nops(b) do a := a/ A006519(A034448(op(k-1,b))) ; od: 1/a ; end: seq(A151659(n),n=0..130) ; # R. J. Mathar, Aug 31 2009
Extensions
Edited and extended by R. J. Mathar, Jun 21 2009
Edited by Franklin T. Adams-Watters, Jun 22 2009
Comments