cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151683 Irregular triangle read by rows: row n (n>=0) gives binomial(wt(n+k),k), k >= 0, up to the point where the terms are all zeros (wt() = A000120()).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 4, 1, 3, 6, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 4, 1, 3, 6, 1, 4, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 4, 1, 3, 6, 1, 1, 1, 4, 3, 4, 1, 1, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2009

Keywords

Comments

Suggested by Hagen von Eitzen's formula for A160573.

Examples

			The rows for n = 0 .. 36 are:
. 1, 1,
. 1, 1, 1,
. 1, 2,
. 1, 1, 1,
. 1, 2, 1, 1,
. 1, 2, 3,
. 1, 3,
. 1, 1, 1,
. 1, 2, 1, 1,
. 1, 2, 3,
. 1, 3, 1, 1,
. 1, 2, 3, 1, 1,
. 1, 3, 3, 4,
. 1, 3, 6,
. 1, 4,
. 1, 1, 1,
. 1, 2, 1, 1,
. 1, 2, 3,
. 1, 3, 1, 1,
. 1, 2, 3, 1, 1,
. 1, 3, 3, 4,
. 1, 3, 6,
. 1, 4, 1, 1,
. 1, 2, 3, 1, 1,
. 1, 3, 3, 4,
. 1, 3, 6, 1, 1,
. 1, 4, 3, 4, 1, 1,
. 1, 3, 6, 4, 5,
. 1, 4, 6, 10,
. 1, 4, 10,
. 1, 5,
. 1, 1, 1,
. 1, 2, 1, 1,
. 1, 2, 3,
. 1, 3, 1, 1,
. 1, 2, 3, 1, 1,
. 1, 3, 3, 4,
...
		

Crossrefs

Row sums are A160573.