A151693 G.f.: Product_{k>=0} (1 + 2*x^(2^k-1) + 2*x^(2^k)).
3, 8, 10, 10, 22, 36, 28, 14, 22, 36, 40, 64, 116, 128, 72, 22, 22, 36, 40, 64, 116, 128, 84, 72, 116, 152, 208, 360, 488, 400, 176, 38, 22, 36, 40, 64, 116, 128, 84, 72, 116, 152, 208, 360, 488, 400, 188, 88, 116, 152, 208, 360, 488, 424, 312, 376, 536, 720, 1136, 1696, 1776
Offset: 0
Keywords
Examples
From _Omar E. Pol_, Jun 09 2009: (Start) Triangle begins: 3; 8,10; 10,22,36,28; 14,22,36,40,64,116,128,72; 22,22,36,40,64,116,128,84,72,116,152,208,360,488,400,176; 38,22,36,40,64,116,128,84,72,116,152,208,360,488,400,188,88,116,152,208,... (End)
Links
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Crossrefs
For generating functions of the form Product_{k>=c} (1 + a*x^(2^k-1) + b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Cf. A000079. - Omar E. Pol, Jun 09 2009