A152980 First differences of toothpick corner sequence A153006.
1, 2, 3, 3, 4, 7, 8, 5, 4, 7, 9, 10, 15, 22, 20, 9, 4, 7, 9, 10, 15, 22, 21, 14, 15, 23, 28, 35, 52, 64, 48, 17, 4, 7, 9, 10, 15, 22, 21, 14, 15, 23, 28, 35, 52, 64, 49, 22, 15, 23, 28, 35, 52, 65, 56, 43, 53, 74, 91, 122, 168, 176, 112, 33, 4, 7, 9, 10, 15, 22, 21, 14, 15, 23, 28, 35, 52
Offset: 0
Examples
Triangle begins: .1; .2; .3,3; .4,7,8,5; .4,7,9,10,15,22,20,9; .4,7,9,10,15,22,21,14,15,23,28,35,52,64,48,17; .... Rows converge to A153001. - _N. J. A. Sloane_, Jun 07 2009
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..16384
- David Applegate, The movie version
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to toothpick sequences
Crossrefs
Equals A151688 divided by 2. - N. J. A. Sloane, Jun 03 2009
For generating functions of the form Product_{k>=c} (1+a*x^(2^k-1)+b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.
Equals A147646/4. - N. J. A. Sloane, May 01 2009
Programs
-
Maple
Maple code from N. J. A. Sloane, May 18 2009. First define old version with offset 1: S:=proc(n) option remember; local i,j; if n <= 0 then RETURN(0); fi; if n <= 2 then RETURN(2^(n-1)); fi; i:=floor(log(n)/log(2)); j:=n-2^i; if j=0 then RETURN(n/2+1); fi; if j<2^i-1 then RETURN(2*S(j)+S(j+1)); fi; if j=2^i-1 then RETURN(2*S(j)+S(j+1)-1); fi; -1; end; # Now change the offset: T:=n->S(n+1); G := (1 + x) * mul(1 + x^(2^k-1) + 2*x^(2^k),k=1..20);
-
Mathematica
nmax = 78; G = x*((1 + x)/(1 - x)) * Product[ (1 + x^(2^n - 1) + 2*x^(2^n)), {n, 1, Log2[nmax] // Ceiling}]; CoefficientList[G + O[x]^nmax, x] // Differences (* Jean-François Alcover, Jul 21 2022 *)
Formula
G.f.: (1 + x) * Prod_{ n >= 1} (1 + x^(2^n-1) + 2*x^(2^n)). - N. J. A. Sloane, May 20 2009, corrected May 21 2009
For formula see A147646 (or, better, see the Maple code below).
Extensions
More terms (based on A147646) from N. J. A. Sloane, May 01 2009
Offset changed by N. J. A. Sloane, May 18 2009
Comments