A151763 If n is a prime == 1 mod 4 then a(n) = 1, if n is a prime == 3 mod 4 then a(n) = -1, otherwise a(n) = 0.
0, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- N. Katz, Lang-Trotter revisited, Bull. Amer. Math. Soc., 46 (2009), 413-457.
Programs
-
Haskell
a151763 n | even n = 0 | a010051 n == 1 = 2 - n `mod` 4 | otherwise = 0 -- Reinhard Zumkeller, Oct 06 2011
-
Maple
a:= proc(n) if n::odd and isprime(n) then 2 - (n mod 4) else 0 fi end proc: seq(a(n),n=1..100); # Robert Israel, Aug 22 2014
-
Mathematica
a[n_] := Which[!PrimeQ[n], 0, m = Mod[n, 4]; m == 1, 1, m == 3, -1, True, 0]; Array[a, 105] (* Jean-François Alcover, Dec 03 2016 *)
Formula
a(n) = (2 - n mod 4) * A010051(n).
Comments